scholarly journals Coalescence dynamics in oil-in-water emulsions at elevated temperatures

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Bijoy Bera ◽  
Rama Khazal ◽  
Karin Schroën

AbstractEmulsion stability in a flow field is an extremely important issue relevant for many daily-life applications such as separation processes, food manufacturing, oil recovery etc. Microfluidic studies can provide micro-scale insight of the emulsion behavior but have primarily focussed on droplet breakup rather than on droplet coalescence. The crucial impact of certain conditions such as increased pressure or elevated temperature frequently used in industrial processes is completely overlooked in such micro-scale studies. In this work, we investigate droplet coalescence in flowing oil-in-water emulsions subjected to higher than room temperatures namely between 20 to 70 $$^{\circ }$$ ∘ C. We use a specifically designed lab-on-a-chip application for this purpose. Coalescence frequency is observed to increase with increasing temperature. We associate with this observation the change in viscosity at higher temperatures triggering a stronger perturbation in the thin aqueous film separating the droplets. Using the scaling law for rupture time of such a thin film, we establish a mechanism leading to a higher coalescence frequency at elevated temperatures.

2021 ◽  
Author(s):  
Bijoy Bera ◽  
Rama Khazal ◽  
Karin Schroën

Abstract Emulsion stability in a flow field is an extremely important issue relevant for many daily-life applications such as separation processes, food manufacturing, oil recovery etc. Microfluidic studies can provide micro-scale insight of the emulsion behavior but have primarily focussed on droplet breakup rather than on droplet coalescence. The crucial impact of certain conditions such as increased pressure or elevated temperature frequently used in industrial processes is completely overlooked in such micro-scale studies. In this work, we investigate droplet coalescence in flowing oil-in-water emulsions subjected to higher than room temperatures namely between 20oC to 70oC. We use a specifically designed lab-on-a-chip application for this purpose. Coalescence frequency is observed to increase with increasing temperature. We associate with this observation the change in viscosity at higher temperatures trigerring a stronger perturbation in the thin aqueous film separating the droplets. Using the scaling law for rupture time of such a thin film, we establish a mechanism leading to a higher coalescence frequency at elevated temperatures.


1978 ◽  
Vol 18 (06) ◽  
pp. 409-417 ◽  
Author(s):  
D.T. Wasan ◽  
S.M. Shah ◽  
N. Aderangi ◽  
M.S. Chan ◽  
J.J. McNamara

Original manuscript received in Society of Petroleum Engineers office Sept. 20, 1977. Paper accepted for publication June 2, 1978. Revised manuscript received Aug. 2, 1978. Paper (SPE 6846) was presented at SPE-AIME 52nd Annual Fall Technical Conference and Exhibition, held in Denver, Oct. 9-12, 1977. Abstract Results of experiments on the coalescence of crude oil drops at an oil-water interface and interdroplet coalescence in crude oil-water emulsions containing petroleum sulfonates and cosurfactant as surfactant systems with other chemical additives were analyzed in terms of interracial viscosity, interfacial tension, interfacial charge, and thickness of the films surrounding the microdroplets. A qualitative correlation was found between coalescence rates and interfacial viscosities; however, there appears to be no direct correlation with interfacial tension. New insight has been gained into the influence of emulsion stability in tertiary oil recovery by surfactant/polymer flooding in laboratory core tests. We concluded that those systems that result in relatively stable emulsions yield poor coalescence rates and, hence, poor oil recovery, Introduction The ability of the surfactant/polymer system to initiate and to propagate an oil bank is the single most important feature of a successful tertiary oil-recovery process. The mechanisms of oil-bank formation and development are yet unknown. It has been suggested that without the initiation of the oil bank, the process behaves more like the unstable injection of a surfactant solution alone, where the oil is produced by entrainment or emulsification in the flowing surfactant stream. In a laboratory study of the initial displacement of residual hydrocarbons by aqueous surfactant solutions, Childress and Schechter and Wade observed that those systems that spontaneously emulsified and coalesced rapidly yielded better oil recovery than those systems that spontaneously formed stable emulsions. Recently, Strange and Talash, Whitley and Ware, and Widmeyer et al. reported results of Salem (IL) low-tension, water-flood tests that used Witco TRS 10-80 TM petroleum sulfonate surfactant solution. They found stable oil-in-water emulsions at the observer well in addition to emulsion problems at the production well and reported that problems at the production well and reported that actual oil recovery was about one-quarter the target value. These studies clearly suggested that poor efficiency of oil recovery results from emulsion stability problems in the low-tension surfactant or micellar processes. Vinatieri presented results of experiments on the stability of crude-oil-in-water emulsions that coo be produced during a surfactant or micellar flood. More recently, we have assessed the rigidity of interfacial films and its relationship to coalescence rate through measurements of interfacial viscosities of crude oils contacted against aqueous solutions containing various concentrations of surfactants and other pertinent chemical additives. Our data clearly indicate that in the absence of a commercial surfactant, interfacial viscosity builds up rapidly, coalescence is inhibited, and the resulting emulsion is quite stable. These phenomena also have been observed by Gladden and Neustadter. Several studies were conducted on the structure of film-forming material at the crude oil/water interface, its effect on emulsion stability, and the role of such films in oil recovery by water or caustic solution displacements. Rigid films were found to reduce the amount of oil recovered. Our studies also have shown that the addition of a commercial surfactant lowered both the interfacial viscosity (ISV) and interfacial tension (IFT) of the crude oil-aqueous solution system. However, the concentration at which both the IFT and ISV are minimized cannot be identified by measuring IFT alone. We have conducted a cinephotomicrographic examination of spontaneous emulsification and a microvisual study of the displacement of residual crude oil by aqueous surfactant solutions in micromodel porous media. SPEJ P. 409


RSC Advances ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 1952-1959
Author(s):  
Yi Zhao ◽  
Fangfang Peng ◽  
Yangchuan Ke

Emulsion with small particle size and good stability stabilized by emulsifiers was successfully prepared for EOR application.


2020 ◽  
Vol 1 (9) ◽  
pp. 3182-3188
Author(s):  
Hsing-Ying Tsai ◽  
Yasuyuki Nakamura ◽  
Takehiro Fujita ◽  
Masanobu Naito

Epoxy resins incorporating aromatic disulfide bonds demonstrated improved adhesive properties with increasing temperature below their glass transition points.


2012 ◽  
Vol 159 ◽  
pp. 346-350
Author(s):  
Shu Min Liu ◽  
Jian Bin Zhang

The elevated temperature short-time tensile test with the sample of casting low nickel stainless steel was conducted on SHIMADZU AG-10 at ten temperatures 300, 500, 600, 700, 800, 950, 1000, 1050, 1100, and 1250°C, respectively. The stress-strain curves with the thermal deformation at the different temperatures, the peak stress intensity-temperature curve, and the reduction percentage of cross sectional area-temperature curve were obtained. Metallographic test samples were prepared and the morphology of deforming zone was observed by optical microscopy. The experimental results show that the tensile strength of the test samples decreases with increasing temperature. From 300 to 800°C, the work harding occurred and the tensile strength increases with increasing strain. The work softening occurred and the tensile strength decreases with increasing strain at temperatures of 800 to 1250°C. The minimum value of reduction percentage was measured at 800 °C. The austenite and delta-ferrite are the main phase in the tested samples. When the tensile temperatures are increased to 1200°C, the delta-ferrite became thinner and broke down to be spheroidized.


Author(s):  
Mustafa Bulut Coskun ◽  
Mahmut Faruk Aksit

With the race for higher power and efficiency new gas turbines operate at ever increasing pressures and temperatures. Increased compression ratios and firing temperatures require many engine parts to survive extended service hours under large pressure loads and thermal distortions while sustaining relative vibratory motion. On the other hand, wear at elevated temperatures limits part life. Combined with rapid oxidation for most materials wear resistance reduces rapidly with increasing temperature. In order to achieve improved wear performance at elevated temperatures better understanding of combined wear and oxidation behavior of high temperature super alloys and coatings needed. In an attempt to aid designers for high temperature applications, this work provides a quick reference for the high temperature friction and wear research available in open literature. High temperature friction and wear data have been collected, grouped and summarized in tables.


1990 ◽  
Vol 213 ◽  
Author(s):  
G. E. Vignoul ◽  
J.M. Sanchez ◽  
J. K. Tien

ABSTRACTA basic characterization of the deformation behavior of Cr2Nb by microindention at ambient and elevated temperatures (up to 1400 °C) was undertaken. The microhardness of this system was seen to decrease with increasing temperature, from 1040 MPa at 25°C to 322 MPa at 1400 °C. Further, the microindention creep behavior of this system was studied by varying time on load at T = 1000 and 1200°C. Analysis of the data showed that m = 24 and Qapp = 477.61 kJ/mole. These unusually high values are indicative of the existence of an effective resisting stress against creep. When the data was fit against a microindention creep deformation law which was modified to incorporate an effective resisting stress term, it was determined that m = 4.5, Qcreep = 357 kJ/mole and the resisting stress term σr = 300 MPa.


2021 ◽  
Vol 33 (7) ◽  
pp. 072002
Author(s):  
Menglan Li ◽  
Wanli Kang ◽  
Zhe Li ◽  
Hongbin Yang ◽  
Ruxue Jia ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 4212
Author(s):  
Mohamed Said ◽  
Bashirul Haq ◽  
Dhafer Al Shehri ◽  
Mohammad Mizanur Rahman ◽  
Nasiru Salahu Muhammed ◽  
...  

Tertiary oil recovery, commonly known as enhanced oil recovery (EOR), is performed when secondary recovery is no longer economically viable. Polymer flooding is one of the EOR methods that improves the viscosity of injected water and boosts oil recovery. Xanthan gum is a relatively cheap biopolymer and is suitable for oil recovery at limited temperatures and salinities. This work aims to modify xanthan gum to improve its viscosity for high-temperature and high-salinity reservoirs. The xanthan gum was reacted with acrylic acid in the presence of a catalyst in order to form xanthan acrylate. The chemical structure of the xanthan acrylate was verified by FT-IR and NMR analysis. The discovery hybrid rheometer (DHR) confirmed that the viscosity of the modified xanthan gum was improved at elevated temperatures, which was reflected in the core flood experiment. Two core flooding experiments were conducted using six-inch sandstone core plugs and Arabian light crude oil. The first formulation—the xanthan gum with 3% NaCl solution—recovered 14% of the residual oil from the core. In contrast, the modified xanthan gum with 3% NaCl solution recovered about 19% of the residual oil, which was 5% higher than the original xanthan gum. The xanthan gum acrylate is therefore more effective at boosting tertiary oil recovery in the sandstone core.


Sign in / Sign up

Export Citation Format

Share Document