scholarly journals Hydrochemistry of sediment pore water in the Bratsk reservoir (Baikal region, Russia)

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
V. I. Poletaeva ◽  
E. N. Tirskikh ◽  
M. V. Pastukhov

AbstractThis study aimed to identify the factors responsible for the major ion composition of pore water from the bottom sediments of the Bratsk water reservoir, which is part of the largest freshwater Baikal-Angara water system. In the Bratsk reservoir, the overlying water was characterized as HCO3–Ca–Mg type with the mineralization ranging between 101.2 and 127.7 mg L−1 and pore water was characterized as HCO3–SO4–Ca, SO4–Cl–Ca–Mg and mixed water types, which had mineralization varying from 165.9 to 4608.1 mg L−1. The ionic composition of pore waters varied both along the sediment depth profile and across the water area. In pore water, the difference between the highest and lowest values was remarkably large: 5.1 times for K+, 13 times for Mg2+, 16 times for HCO3−, 20 times for Ca2+, 23 times for Na+, 80 times for SO42−, 105 times for Cl−. Such variability at different sites of the reservoir was due to the interrelation between major ion concentrations in the pore water and environmental parameters. The major factor responsible for pore water chemistry was the dissolution of sediment-forming material coming from various geochemical provinces. In the south part of the reservoir, Cl−, Na+ and SO42− concentrations may significantly increase in pore water due to the effect of subaqueous flow of highly mineralized groundwater.

2020 ◽  
Author(s):  
Vera Poletaeva ◽  
Elvira Tirskikh ◽  
Mikhail Pastukhov

Abstract This study was aimed at identifying the processes responsible for the major ion composition of pore water from the bottom sediments of the Bratsk water reservoir, which is a part of the largest freshwater Baikal-Angara water system. The pore water ionic composition varies both along the sediment depth profile and across the water area. In pore water, the difference between the highest and lowest values is remarkably large: 5.1 times for K+, 13 times for Mg2+, 16 times for HCO3-, 20 times for Ca2+, 23 times for Na+, 80 times for SO42-, 105 times for Cl-. Such a variability suggests that the dominant factors, influencing pore water chemistry, depend on the location. At the first stages of the sedimentation process, the chemistry of the pore water in the Bratsk reservoir is dependent on HCO3-Ca of the overlying water. Later on, due to the interaction with the sedimentary terrigenous material, they changed to SO4, SO4-HCO3, HCO3-SO4, HCO3-Cl-SO4-water types with exchangeable cations, mainly Ca. Some of pore waters may have a complex genesis associated with subaqueous groundwater discharge. The change in the redox potential observed in the pore water is the indicator of early-diagenetic transformations taking place in bottom sediments.


1995 ◽  
Vol 46 (1) ◽  
pp. 237 ◽  
Author(s):  
Y Song ◽  
G Muller

Pore-water components (SO42-, Fe2+, Mn2+), including nutrients (NH4+:, NO3-, PO43-), alkalinity and pH were determined at three sites in the Neckar River. Sequential extraction procedures and trace metals in both pore waters and sediments are reported in order to evaluate the mobility of trace metals in contaminated sediments. The results show that the mineralization of organic matter plays an important role in the cycling of nutrients and trace metals. Pore-water profiles (Zn, Cu, Pb, Cd) suggest that the element maximums at the sediment-water interface are caused by the decomposition of biomass. Low concentrations of dissolved Zn, Cu, Pb and Cd in the anoxic sediments can be explained by a sharp decrease of SO42- in pore water concomitant with HS- production. This leads to the formation of highly insoluble metal sulfides. Solubility calculations show that the sediments act as a sink for trace metals with respect to trace metal sulfides. The organic/sulfidic-bound fraction accounts for 64-81% of Cd in the sediment cores, 36-67% of Pb and 51-69% of Cu. In contrast, Cr in pore water increases with depth because of its release from Fe/Mn oxides. NH4+ and PO43- are also released into the pore water owing to the mineralization of organic matter. No significant fluxes of NH4+ and PO43- into overlying water were found because of the existence of an oxic surface layer.


2017 ◽  
Vol 19 (2) ◽  
pp. 1-18 ◽  
Author(s):  
Sophia Barinova ◽  
Elena Krupa ◽  
Ulrika Kadyrova

AbstractThe spatial distribution of species richness of phytoplankton was studied along the Balkhash Lake water area during the summer of 2004. With statistically weak connections of phytoplankton with environmental parameters, three-dimensional graphs revealed a complex character of its spatial variability in the gradient of environmental factors. Macrophytes had a stimulating effect on the species richness of planktonic algae. We found a correlation between species richness of Cyanobacteria, Chrysophyta, Euglenophyta and Dinophyta and the ionic composition of water. The important role of temperature was traced. Species richness of algal communities increased with increasing temperature in the gradient of nutrients and correlated with the abundance of macrophytes.


Author(s):  
Wen ◽  
Wu ◽  
Yang ◽  
Jiang ◽  
Zhong

Nutrients released from sediments have a significant influence on the water quality in eutrophic lakes and reservoirs. To clarify the internal nutrient load and provide reference for eutrophication control in Yuqiao Reservoir, a drinking water source reservoir in China, pore water profiles and sediment core incubation experiments were conducted. The nutrients in the water (soluble reactive P (SRP), nitrate-N (NO3−-N), nitrite-N (NO2−-N), and ammonium-N (NH4+-N)) and in the sediments (total N (TN), total P (TP) and total organic carbon (TOC)) were quantified. The results show that NH4+-N was the main component of inorganic N in the pore water. NH4+-N and SRP were higher in the pore water than in the overlying water, and the concentration gradient indicated a diffusion potential from the sediment to the overlying water. The NH4+-N, NO3−-N, and SRP fluxes showed significant differences amongst the seasons. The NH4+-N and SRP fluxes were significantly higher in the summer than in other seasons, while NO3−-N was higher in the autumn. The sediment generally acted as a source of NH4+-N and SRP and as a sink for NO3−-N and NO2−-N. The sediments release 1133.15 and 92.46 tons of N and P, respectively, to the overlying water each year.


We present an overview of geochemical data from pore waters and solid phases that clarify earliest diagenetic processes affecting modern, shallow marine carbonate sediments. Acids produced by organic matter decomposition react rapidly with metastable carbonate minerals in pore waters to produce extensive syndepositional dissolution and recrystallization. Stoichiometric relations among pore water solutes suggest that dissolution is related to oxidation of H 2 S which can accumulate in these low-Fe sediments. Sulphide oxidation likely occurs by enhanced diffusion of O 2 mediated by sulphide-oxidizing bacteria which colonize oxic/anoxic interfaces invaginating these intensely bioturbated sediments. Buffering of pore water stable isotopic compositions towards values of bulk sediment and rapid 45 Ca exchange rates during sediment incubations demonstrate that carbonate recrystallization is a significant process. Comparison of average biogenic carbonate production rates with estimated rates of dissolution and recrystallization suggests that over half the gross production is dissolved and/or recrystallized. Thus isotopic and elemental composition of carbonate minerals can experience significant alteration during earliest burial driven by chemical exchange among carbonate minerals and decomposing organic matter. Temporal shifts in palaeo-ocean carbon isotope composition inferred from bulk-rocks may be seriously compromised by facies-dependent differences in dissolution and recrystallization rates.


2013 ◽  
Vol 10 (1) ◽  
pp. 53-66 ◽  
Author(s):  
W. J. Burt ◽  
H. Thomas ◽  
K. Fennel ◽  
E. Horne

Abstract. Exchanges between sediment pore waters and the overlying water column play a significant role in the chemical budgets of many important chemical constituents. Direct quantification of such benthic fluxes requires explicit knowledge of the sediment properties and biogeochemistry. Alternatively, changes in water-column properties near the sediment-water interface can be exploited to gain insight into the sediment biogeochemistry and benthic fluxes. Here, we apply a 1-D diffusive mixing model to near-bottom water-column profiles of 224Ra activity in order to yield vertical eddy diffusivities (KZ), based upon which we assess the diffusive exchange of dissolved inorganic carbon (DIC), nutrients and oxygen (O2), across the sediment-water interface in a coastal inlet, Bedford Basin, Nova Scotia, Canada. Numerical model results are consistent with the assumptions regarding a constant, single benthic source of 224Ra, the lack of mixing by advective processes, and a predominantly benthic source and sink of DIC and O2, respectively, with minimal water-column respiration in the deep waters of Bedford Basin. Near-bottom observations of DIC, O2 and nutrients provide flux ratios similar to Redfield values, suggesting that benthic respiration of primarily marine organic matter is the dominant driver. Furthermore, a relative deficit of nitrate in the observed flux ratios indicates that denitrification also plays a role in the oxidation of organic matter, although its occurrence was not strong enough to allow us to detect the corresponding AT fluxes out of the sediment. Finally, comparison with other carbon sources reveal the observed benthic DIC release as a significant contributor to the Bedford Basin carbon system.


2008 ◽  
Vol 5 (6) ◽  
pp. 1615-1623 ◽  
Author(s):  
S. Fiedler ◽  
B. S. Höll ◽  
A. Freibauer ◽  
K. Stahr ◽  
M. Drösler ◽  
...  

Abstract. Numerous studies have dealt with carbon (C) contents in Histosols, but there are no studies quantifying the relative importance of the individual C components in pore waters. For this study, measurements were taken of all the carbon components (particulate organic carbon, POC; dissolved organic carbon, DOC; dissolved inorganic carbon, DIC; dissolved methane, CH4) in the soil pore water of calcareous fens under three different water management regimes (re-wetted, deeply and moderately drained). Pore water was collected weekly or biweekly (April 2004 to April 2006) at depths between 10 and 150 cm. The main results obtained were: (1) DIC (94–280 mg C l−1) was the main C-component. (2) POC and DOC concentrations in the pore water (14–125 mg C l−1 vs. 41–95 mg C l−1) were pari passu. (3) Dissolved CH4 was the smallest C component (0.005–0.9 mg C l−1). Interestingly, about 30% of the POM particles were colonized by microbes indicating that they are active in the internal C turnover. Certainly, both POC and DOC fractions are essential components of the C budget of peatlands. Furthermore, dissolved CO2 in all forms of DIC appears to be an important part of peatland C-balance.


2013 ◽  
Vol 10 (2) ◽  
pp. 891-904 ◽  
Author(s):  
K.-H. Knorr

Abstract. Dissolved organic carbon (DOC) exports from many catchments in Europe and North-America are steadily increasing. Several studies have sought to explain this observation. As possible causes, a decrease in acid rain or sulfate deposition, concomitant reductions in ionic strength and increasing temperatures were identified. DOC often originates from riparian wetlands; but here, despite higher DOC concentrations, ionic strength in pore waters usually exceeds that in surface waters. In the catchment under study, DOC concentrations were synchronous with dissolved iron concentrations in pore and stream water. This study aims at testing the hypothesis that DOC exports are mediated by iron reduction/oxidation cycles. Following the observed hydrographs, δ18O of water and DOC fluorescence, the wetlands were identified as the main source of DOC. Antecedent biogeochemical conditions, i.e., water table levels in the wetlands, influenced the discharge patterns of nitrate, iron and DOC during an event. The correlation of DOC with pH was positive in pore waters, but negative in surface waters; it was negative for DOC with sulfate in pore waters, but only weak in surface waters. Though, the positive correlation of DOC with iron was universal for pore and surface water. The decline of DOC and iron concentrations in transition from anoxic wetland pore water to oxic stream water suggests a flocculation of DOC with oxidising iron, leading to a drop in pH in the stream during high DOC fluxes. The pore water did not per se differ in pH. There is, thus, a need to consider processes more thoroughly of DOC mobilisation in wetlands when interpreting DOC exports from catchments. The coupling of DOC with iron fluxes suggested that increased DOC exports could at least, in part, be caused by increasing activities in iron reduction, possibly due to increases in temperature, increasing wetness of riparian wetlands, or by a shift from sulfate dominated to iron reduction dominated biogeochemical regimes.


2012 ◽  
Vol 84 (2) ◽  
pp. 427-442 ◽  
Author(s):  
Winston F.O. Gonçalves ◽  
Wanilson Luiz-Silva ◽  
Wilson Machado ◽  
Erico C. Nizoli ◽  
Ricardo E. Santelli

The geochemical composition of sediment pore water was investigated in comparison with the composition of sediment particles and surface water in an estuary within one of the most industrialized areas in Latin America (Santos-Cubatão estuarine system, SE Brazil). Pore and surface waters presented anomalously high levels of F-, NH4+, Fe, Mn and P due to two industrial point sources. In the summer, when SO4(2-)/Cl- ratios suggested an enhanced sulfate reduction, the higher dissolved levels observed in pore waters for some metals (e.g., Cu and Ni) were attributed to reductive dissolution of oxidized phases. Results evidenced that the risks of surface water concentration increase due to diffusion or advection from pore water are probably dependent on coupled influences of tidal pumping and groundwater inputs.


Sign in / Sign up

Export Citation Format

Share Document