scholarly journals Mitochondrial DNA duplication, recombination, and introgression during interspecific hybridization

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Silvia Bágeľová Poláková ◽  
Žaneta Lichtner ◽  
Tomáš Szemes ◽  
Martina Smolejová ◽  
Pavol Sulo

AbstractmtDNA recombination events in yeasts are known, but altered mitochondrial genomes were not completed. Therefore, we analyzed recombined mtDNAs in six Saccharomyces cerevisiae × Saccharomyces paradoxus hybrids in detail. Assembled molecules contain mostly segments with variable length introgressed to other mtDNA. All recombination sites are in the vicinity of the mobile elements, introns in cox1, cob genes and free standing ORF1, ORF4. The transplaced regions involve co-converted proximal exon regions. Thus, these selfish elements are beneficial to the host if the mother molecule is challenged with another molecule for transmission to the progeny. They trigger mtDNA recombination ensuring the transfer of adjacent regions, into the progeny of recombinant molecules. The recombination of the large segments may result in mitotically stable duplication of several genes.

Genetics ◽  
1998 ◽  
Vol 148 (4) ◽  
pp. 1763-1776
Author(s):  
Olga Zelenaya-Troitskaya ◽  
Scott M Newman ◽  
Koji Okamoto ◽  
Philip S Perlman ◽  
Ronald A Butow

Abstract Previous studies have established that the mitochondrial high mobility group (HMG) protein, Abf2p, of Saccharomyces cerevisiae influences the stability of wild-type (ρ+) mitochondrial DNA (mtDNA) and plays an important role in mtDNA organization. Here we report new functions for Abf2p in mtDNA transactions. We find that in homozygous Δabf2 crosses, the pattern of sorting of mtDNA and mitochondrial matrix protein is altered, and mtDNA recombination is suppressed relative to homozygous ABF2 crosses. Although Abf 2p is known to be required for the maintenance of mtDNA in ρ+ cells growing on rich dextrose medium, we find that it is not required for the maintenance of mtDNA in ρ− cells grown on the same medium. The content of both ρ+ and ρ− mtDNAs is increased in cells by 50–150% by moderate (two- to threefold) increases in the ABF2 copy number, suggesting that Abf2p plays a role in mtDNA copy control. Overproduction of Abf 2p by ≥10-fold from an ABF2 gene placed under control of the GAL1 promoter, however, leads to a rapid loss of ρ+ mtDNA and a quantitative conversion of ρ+ cells to petites within two to four generations after a shift of the culture from glucose to galactose medium. Overexpression of Abf2p in ρ− cells also leads to a loss of mtDNA, but at a slower rate than was observed for ρ+ cells. The mtDNA instability phenotype is related to the DNA-binding properties of Abf 2p because a mutant Abf 2p that contains mutations in residues of both HMG box domains known to affect DNA binding in vitro, and that binds poorly to mtDNA in vivo, complements Δabf2 cells only weakly and greatly lessens the effect of overproduction on mtDNA instability. In vivo binding was assessed by colocalization to mtDNA of fusions between mutant or wild-type Abf 2p and green fluorescent protein. These findings are discussed in the context of a model relating mtDNA copy number control and stability to mtDNA recombination.


Genetics ◽  
1978 ◽  
Vol 90 (3) ◽  
pp. 517-530
Author(s):  
K M Oakley ◽  
G D Clark-Walker

ABSTRACT When crosses are performed between newly arisen, spontaneous petite mutants of Saccharomyces cerevisiae, respiratory competent (restored) colonies can form. Some of the restored colonies are highly sectored and produce large numbers of petite mutants. The high-frequency petite formation trait is inherited in a non-Mendelian manner, and elimination of mitochondrial DNA from these strains results in the loss of the trait. These results indicate that abnormal mitochondrial genomes are sometimes formed during restoration of respiratory competence. It is hypothesized that these abnormalities result either from recombination between mitochondrial DNA fragments to produce molecules having partial duplications contained on inverted or transposed sequences, or else recombinational "hot spots" have been expanded.


2020 ◽  
Vol 85 (4) ◽  
pp. 895-901
Author(s):  
Takamitsu Amai ◽  
Tomoka Tsuji ◽  
Mitsuyoshi Ueda ◽  
Kouichi Kuroda

ABSTRACT Mitochondrial dysfunction can occur in a variety of ways, most often due to the deletion or mutation of mitochondrial DNA (mtDNA). The easy generation of yeasts with mtDNA deletion is attractive for analyzing the functions of the mtDNA gene. Treatment of yeasts with ethidium bromide is a well-known method for generating ρ° cells with complete deletion of mtDNA from Saccharomyces cerevisiae. However, the mutagenic effects of ethidium bromide on the nuclear genome cannot be excluded. In this study, we developed a “mito-CRISPR system” that specifically generates ρ° cells of yeasts. This system enabled the specific cleavage of mtDNA by introducing Cas9 fused with the mitochondrial target sequence at the N-terminus and guide RNA into mitochondria, resulting in the specific generation of ρ° cells in yeasts. The mito-CRISPR system provides a concise technology for deleting mtDNA in yeasts.


Genetics ◽  
2002 ◽  
Vol 162 (3) ◽  
pp. 1147-1156 ◽  
Author(s):  
Theodor Hanekamp ◽  
Mary K Thorsness ◽  
Indrani Rebbapragada ◽  
Elizabeth M Fisher ◽  
Corrine Seebart ◽  
...  

Abstract In the yeast Saccharomyces cerevisiae, certain mutant alleles of YME4, YME6, and MDM10 cause an increased rate of mitochondrial DNA migration to the nucleus, carbon-source-dependent alterations in mitochondrial morphology, and increased rates of mitochondrial DNA loss. While single mutants grow on media requiring mitochondrial respiration, any pairwise combination of these mutations causes a respiratory-deficient phenotype. This double-mutant phenotype allowed cloning of YME6, which is identical to MMM1 and encodes an outer mitochondrial membrane protein essential for maintaining normal mitochondrial morphology. Yeast strains bearing null mutations of MMM1 have altered mitochondrial morphology and a slow growth rate on all carbon sources and quantitatively lack mitochondrial DNA. Extragenic suppressors of MMM1 deletion mutants partially restore mitochondrial morphology to the wild-type state and have a corresponding increase in growth rate and mitochondrial DNA stability. A dominant suppressor also suppresses the phenotypes caused by a point mutation in MMM1, as well as by specific mutations in YME4 and MDM10.


1992 ◽  
Vol 12 (6) ◽  
pp. 2561-2569 ◽  
Author(s):  
L L Stohl ◽  
D A Clayton

Yeast mitochondrial DNA contains multiple promoters that sponsor different levels of transcription. Several promoters are individually located immediately adjacent to presumed origins of replication and have been suggested to play a role in priming of DNA replication. Although yeast mitochondrial DNA replication origins have not been extensively characterized at the primary sequence level, a common feature of these putative origins is the occurrence of a short guanosine-rich region in the priming strand downstream of the transcriptional start site. This situation is reminiscent of vertebrate mitochondrial DNA origins and raises the possibility of common features of origin function. In the case of human and mouse cells, there exists an RNA processing activity with the capacity to cleave at a guanosine-rich mitochondrial RNA sequence at an origin; we therefore sought the existence of a yeast endoribonuclease that had such a specificity. Whole cell and mitochondrial extracts of Saccharomyces cerevisiae contain an RNase that cleaves yeast mitochondrial RNA in a site-specific manner similar to that of the human and mouse RNA processing activity RNase MRP. The exact location of cleavage within yeast mitochondrial RNA corresponds to a mapped site of transition from RNA to DNA synthesis. The yeast activity also cleaved mammalian mitochondrial RNA in a fashion similar to that of the mammalian RNase MRPs. The yeast endonuclease is a ribonucleoprotein, as judged by its sensitivity to nucleases and proteinase, and it was present in yeast strains lacking mitochondrial DNA, which demonstrated that all components required for in vitro cleavage are encoded by nuclear genes. We conclude that this RNase is the yeast RNase MRP.


Genetics ◽  
2000 ◽  
Vol 154 (1) ◽  
pp. 147-154 ◽  
Author(s):  
Douglas J Kominsky ◽  
Peter E Thorsness

Abstract Organisms that can grow without mitochondrial DNA are referred to as “petite-positive” and those that are inviable in the absence of mitochondrial DNA are termed “petite-negative.” The petite-positive yeast Saccharomyces cerevisiae can be converted to a petite-negative yeast by inactivation of Yme1p, an ATP- and metal-dependent protease associated with the inner mitochondrial membrane. Suppression of this yme1 phenotype can occur by virtue of dominant mutations in the α- and γ-subunits of mitochondrial ATP synthase. These mutations are similar or identical to those occurring in the same subunits of the same enzyme that converts the petite-negative yeast Kluyveromyces lactis to petite-positive. Expression of YME1 in the petite-negative yeast Schizosaccharomyces pombe converts this yeast to petite-positive. No sequence closely related to YME1 was found by DNA-blot hybridization to S. pombe or K. lactis genomic DNA, and no antigenically related proteins were found in mitochondrial extracts of S. pombe probed with antisera directed against Yme1p. Mutations that block the formation of the F1 component of mitochondrial ATP synthase are also petite-negative. Thus, the F1 complex has an essential activity in cells lacking mitochondrial DNA and Yme1p can mediate that activity, even in heterologous systems.


2020 ◽  
Vol 16 (9) ◽  
Author(s):  
Cheng Xu ◽  
Hui Xia ◽  
Shuwen Zhang ◽  
Yuping Zhao ◽  
Zhiqiang Qi ◽  
...  

AbstractIn this study, yeast was isolated from cherry wine lees by rose Bengal medium, and its species was identified through three-stage screening, morphological observation and molecular biological identification. Moreover, the tolerance of screened strains was studied. The results showed that 30 strains of yeast were isolated from cherry wine lees, and five strains of yeast were selected, which were named YJN10, YJN16, YJN18, YJN19 and YJN28. After preliminary appraisal, strain YJN10 was Saccharomyces kudriavzevii, strain YJN16 was Saccharomyces paradoxus, and strains YJN18, YJN19, YJN28 were Saccharomyces cerevisiae. In the tolerance study, the tolerable sugar concentrations of the five strains were 650, 650, 550, 600 and 600 g/L. The tolerable alcohol volume fractions were 20, 20, 16, 18 and 18%. The tolerable molar concentration of potassium chloride was 1.8, 1.8, 1.5, 1.5 and 1.5 mol/L. Finally, strains YJN10, YJN16, YJN19 and YJN28 showed good tolerance, which laid a foundation for subsequent application in cherry wine fermentation.


1990 ◽  
Vol 10 (4) ◽  
pp. 1530-1537
Author(s):  
P J Skelly ◽  
G D Clark-Walker

Saccharomyces cerevisiae mitochondrial DNA deletion mutants have been used to examine whether base-biased intergenic regions of the genome influence mitochondrial biogenesis. One strain (delta 5.0) lacks a 5-kilobase (kb) segment extending from the proline tRNA gene to the small rRNA gene that includes ori1, while a second strain (delta 3.7) is missing a 3.7-kb region between the genes for ATPase subunit 6 and glutamic acid tRNA that encompasses ori7 plus ori2. Growth of these strains on both fermentable and nonfermentable substrates does not differ from growth of the wild-type strain, indicating that the deletable regions of the genome do not play a direct role in the expression of mitochondrial genes. Examination of whether the 5- or 3.7-kb regions influence mitochondrial DNA transmission was undertaken by crossing strains and examining mitochondrial genotypes in zygotic colonies. In a cross between strain delta 5.0, harboring three active ori elements (ori2, ori3, and ori5), and strain delta 3.7, containing only two active ori elements (ori3 and ori5), there is a preferential recovery of the genome containing two active ori elements (37% of progeny) over that containing three active elements (20%). This unexpected result, suggesting that active ori elements do not influence transmission of respiratory-competent genomes, is interpreted to reflect a preferential conversion of the delta 5.0 genome to the wild type (41% of progeny). Supporting evidence for conversion over biased transmission is shown by preferential recovery of a nonparental genome in the progeny of a heterozygous cross in which both parental molecules can be identified by size polymorphisms.


Sign in / Sign up

Export Citation Format

Share Document