scholarly journals A novel characteristic of a phytoplankton as a potential source of straight-chain alkanes

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Naomi Harada ◽  
Yuu Hirose ◽  
Song Chihong ◽  
Hirofumi Kurita ◽  
Miyako Sato ◽  
...  

AbstractBiosynthesis of hydrocarbons is a promising approach for the production of alternative sources of energy because of the emerging need to reduce global consumption of fossil fuels. However, the suitability of biogenic hydrocarbons as fuels is limited because their range of the number of carbon atoms is small, and/or they contain unsaturated carbon bonds. Here, we report that a marine phytoplankton, Dicrateria rotunda, collected from the western Arctic Ocean, can synthesize a series of saturated hydrocarbons (n-alkanes) from C10H22 to C38H78, which are categorized as petrol (C10–C15), diesel oils (C16–C20), and fuel oils (C21–C38). The observation that these n-alkanes were also produced by ten other cultivated strains of Dicrateria collected from the Atlantic and Pacific oceans suggests that this capability is a common characteristic of Dicrateria. We also identified that the total contents of the n-alkanes in the Arctic D. rotunda strain increased under dark and nitrogen-deficient conditions. The unique characteristic of D. rotunda could contribute to the development of a new approach for the biosynthesis of n-alkanes.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jang-Mu Heo ◽  
Seong-Su Kim ◽  
Sung-Ho Kang ◽  
Eun Jin Yang ◽  
Ki-Tae Park ◽  
...  

AbstractThe western Arctic Ocean (WAO) has experienced increased heat transport into the region, sea-ice reduction, and changes to the WAO nitrous oxide (N2O) cycles from greenhouse gases. We investigated WAO N2O dynamics through an intensive and precise N2O survey during the open-water season of summer 2017. The effects of physical processes (i.e., solubility and advection) were dominant in both the surface (0–50 m) and deep layers (200–2200 m) of the northern Chukchi Sea with an under-saturation of N2O. By contrast, both the surface layer (0–50 m) of the southern Chukchi Sea and the intermediate (50–200 m) layer of the northern Chukchi Sea were significantly influenced by biogeochemically derived N2O production (i.e., through nitrification), with N2O over-saturation. During summer 2017, the southern region acted as a source of atmospheric N2O (mean: + 2.3 ± 2.7 μmol N2O m−2 day−1), whereas the northern region acted as a sink (mean − 1.3 ± 1.5 μmol N2O m−2 day−1). If Arctic environmental changes continue to accelerate and consequently drive the productivity of the Arctic Ocean, the WAO may become a N2O “hot spot”, and therefore, a key region requiring continued observations to both understand N2O dynamics and possibly predict their future changes.


2021 ◽  
Author(s):  
Jesse R. Farmer ◽  
Daniel M. Sigman ◽  
Julie Granger ◽  
Ona M. Underwood ◽  
François Fripiat ◽  
...  

AbstractSalinity-driven density stratification of the upper Arctic Ocean isolates sea-ice cover and cold, nutrient-poor surface waters from underlying warmer, nutrient-rich waters. Recently, stratification has strengthened in the western Arctic but has weakened in the eastern Arctic; it is unknown if these trends will continue. Here we present foraminifera-bound nitrogen isotopes from Arctic Ocean sediments since 35,000 years ago to reconstruct past changes in nutrient sources and the degree of nutrient consumption in surface waters, the latter reflecting stratification. During the last ice age and early deglaciation, the Arctic was dominated by Atlantic-sourced nitrate and incomplete nitrate consumption, indicating weaker stratification. Starting at 11,000 years ago in the western Arctic, there is a clear isotopic signal of Pacific-sourced nitrate and complete nitrate consumption associated with the flooding of the Bering Strait. These changes reveal that the strong stratification of the western Arctic relies on low-salinity inflow through the Bering Strait. In the central Arctic, nitrate consumption was complete during the early Holocene, then declined after 5,000 years ago as summer insolation decreased. This sequence suggests that precipitation and riverine freshwater fluxes control the stratification of the central Arctic Ocean. Based on these findings, ongoing warming will cause strong stratification to expand into the central Arctic, slowing the nutrient supply to surface waters and thus limiting future phytoplankton productivity.


2017 ◽  
Vol 130 (4) ◽  
pp. 332 ◽  
Author(s):  
Thomas S Jung ◽  
Jay Frandsen ◽  
Danny C Gordon ◽  
David H Mossop

A consequence of rapid global warming has been the shrubification (increase in shrub abundance, cover, and biomass) of arctic and alpine tundra ecosystems. Shrubification is likely a key driver of predicted and observed changes in the biodiversity of the Arctic. The American Beaver (Castor canadensis) has a vast distributional range, covering most of north America below the tree line; however, it has not been recorded in tundra habitat of the Beaufort Coastal Plain of Yukon and Alaska. in 2015, we observed a beaver dam, lodge, and winter food cache on the Babbage River in Ivvavik National Park, Yukon, Canada. Local Inuvialuit hunters first observed beavers on two rivers immediately east of the Babbage River in 2008 and 2009. Together, these are the first observations of beavers on the Beaufort Coastal Plain and indicate initial attempts at colonization. Colonization of the Beaufort Coastal Plain by beavers may have been facilitated by shrubification of river valleys on the tundra of northern Yukon and adjacent Alaska, which is a consequence of rapid climate warming in the western Arctic.


2015 ◽  
Vol 773-774 ◽  
pp. 430-434
Author(s):  
Azizul Mokhtar ◽  
Nazrul Atan ◽  
Najib Rahman ◽  
Amir Khalid

Bio-additive is biodegradable and produces less air pollution thus significant for replacing the limited fossil fuels and reducing threats to the environment from exhaust emissions and global warming. Instead, the bio-additives can remarkably improve the fuel economy SI engine while operating on all kinds of fuel. Some of the bio-additive has the ability to reduce the total CO2 emission from internal petrol engine. This review paper focuses to determine a new approach in potential of bio-additives blends operating with bio-petrol on performance and emissions of spark ignition engine. It is shown that the variant in bio-additives blending ratio and engine operational condition are reduced engine-out emissions and increased efficiency. It seems that the bio-additives can increase the maximum cylinder combustion pressure, improve exhaust emissions and largely reduce the friction coefficient. The review concludes that the additives usage in bio-petrol is inseparable for the better engine performance and emission control and further research is needed to develop bio-petrol specific additives.


Author(s):  
John R. Bockstoce

This chapter focuses on the development and advance of the arctic fur trade to the year 1914: the decline of the shore whaling industry and the rise of the market for white fox furs; the beginning of the dispersal of trapping families along the coast; the importance of the Cape Smythe Whaling and Trading Company at Barrow, Alaska; and the activities of H. Liebes and Company, furriers of San Francisco.


Energies ◽  
2021 ◽  
Vol 14 (17) ◽  
pp. 5516
Author(s):  
Giuseppe T. Cirella ◽  
Alessio Russo ◽  
Federico Benassi ◽  
Ernest Czermański ◽  
Anatoliy G. Goncharuk ◽  
...  

This essay considers the rural-to-urban transition and correlates it with urban energy demands. Three distinct themes are inspected and interrelated to develop awareness for an urbanizing world: internal urban design and innovation, technical transition, and geopolitical change. Data were collected on the use of energy in cities and, by extension, nation states over the last 30 years. The urban population boom continues to pressure the energy dimension with heavily weighted impacts on less developed regions. Sustainable urban energy will need to reduce resource inputs and environmental impacts and decouple economic growth from energy consumption. Fossil fuels continue to be the preferred method of energy for cities; however, an increased understanding is emerging that sustainable energy forms can be implemented as alternatives. Key to this transition will be the will to invest in renewables (i.e., solar, wind, hydro, tidal, geothermal, and biomass), efficient infrastructure, and smart eco-city designs. This essay elucidates how the technical transition of energy-friendly technologies focuses on understanding the changes in the energy mix from non-renewable to renewable. Smart electricity storage grids with artificial intelligence can operate internationally and alleviate some geopolitical barriers. Energy politics is shown to be a problematic hurdle with case research examples specific to Central and Eastern Europe. The energy re-shift stressed is a philosophical re-thinking of modern cities as well as a new approach to the human-energy relationship.


2017 ◽  
Author(s):  
Sang Heon Lee ◽  
Jang Han Lee ◽  
Howon Lee ◽  
Jae Joong Kang ◽  
Jae Hyung Lee ◽  
...  

Abstract. The Laptev and East Siberian seas are the least biologically studied region in the Arctic Ocean, although they are highly dynamic in terms of active processing of organic matter impacting the transport to the deep Arctic Ocean. Field-measured carbon and nitrogen uptake rates of phytoplankton were conducted in the Laptev and East Siberian seas as part of the NABOS (Nansen and Amundsen Basins Observational System) program. Major inorganic nutrients were mostly depleted at 100–50 % light depths but were not depleted within the euphotic depths in the Laptev and East Siberian seas. The water column-integrated chl-a concentration in this study was significantly higher than that in the western Arctic Ocean (t-test, p > 0.01). Unexpectedly, the daily carbon and nitrogen uptake rates in this study (average ± S.D. = 110.3 ± 88.3 mg C m−2 d−1 and 37.0 ± 25.8 mg N m−2 d−1, respectively) are within previously reported ranges. Surprisingly, the annual primary production (13.2 g C m−2) measured in the field during the vegetative season is approximately one order of magnitude lower than the primary production reported from a satellite–based estimation. Further validation using field-measured observations is necessary for a better projection of the ecosystem in the Laptev and East Siberian seas responding to ongoing climate change.


Rangifer ◽  
2019 ◽  
Vol 39 (1) ◽  
pp. 43-58
Author(s):  
Alexander K. Prichard ◽  
Ryan L. Klimstra ◽  
Brian T. Person ◽  
Lincoln S. Parrett

With industrial development expanding in the Arctic, there is increasing interest in quantifying the impacts of development projects on barren ground caribou (Rangifer tarandus granti). The primary data source to assess caribou distribution and predict impacts in remote areas of Alaska has shifted in recent decades from aerial survey data to telemetry data, but these techniques have different strengths and weaknesses. The ranges of two caribou herds, the Western Arctic Herd and the Teshekpuk Herd, overlap in northwest Alaska between Wainwright and Atqasuk, Alaska. Based on long-term telemetry data sets, this region was thought to be outside of the core calving ranges of both herds. Calving has long been reported to occur in this general area, but early reports assumed caribou were from the Western Arctic Herd and only one systematic aerial survey of caribou density and distribution during calving has been conducted in this area in recent decades. Following interest in industrial development in this area, we conducted aerial strip-transect surveys during early to mid-June 2013–2015 to directly assess the density and distribution of caribou in the area and we used existing telemetry data to compare our results to the seasonal distribution of both herds. Total caribou densities varied between 0.36 and 1.06 caribou/km² among years, and calf densities varied 0.04 and 0.25 calves/km² among years. Contrary to assumptions by early researchers in the area, telemetry data indicated that caribou in this area during early to mid-June were from the Teshekpuk Herd. The use of telemetry data alone underestimated the importance of this area for calving, but the combination of aerial surveys and telemetry data provided complementary information on caribou use of this area showing the importance of collecting the appropriate types of data for assessing potential impacts of development on caribou.


1986 ◽  
Vol 108 (4) ◽  
pp. 641-647 ◽  
Author(s):  
H. R. Lander ◽  
H. E. Reif

The most significant potential source of aviation gas turbine fuels in the continental United States is the western oil shale located in the Rocky Mountain States of Colorado, Utah, and Wyoming. Nearly 600 billion barrels of recoverable oil is located in this area. This paper discusses the availability of oil shale and reviews the recovery, upgrading and refining schemes necessary to produce fuel which can be used in present-day aircraft. Other synthetic fuels are discussed with regard to the processing necessary to produce suitable fuels for today’s high-performance aircraft. Heavy oil and tar sand bitumen are likely to be refined in the next decade. Methods for producing suitable fuels are discussed. The chemical structure of these sources, which is basically cyclic, leads to the potential for heavier fuels with more energy per given volume and therefore longer range for certain aircraft. This exciting possibility is reviewed.


2015 ◽  
Vol 112 (19) ◽  
pp. 5921-5926 ◽  
Author(s):  
Jong-Yeon Park ◽  
Jong-Seong Kug ◽  
Jürgen Bader ◽  
Rebecca Rolph ◽  
Minho Kwon

Phytoplankton have attracted increasing attention in climate science due to their impacts on climate systems. A new generation of climate models can now provide estimates of future climate change, considering the biological feedbacks through the development of the coupled physical–ecosystem model. Here we present the geophysical impact of phytoplankton, which is often overlooked in future climate projections. A suite of future warming experiments using a fully coupled ocean−atmosphere model that interacts with a marine ecosystem model reveals that the future phytoplankton change influenced by greenhouse warming can amplify Arctic surface warming considerably. The warming-induced sea ice melting and the corresponding increase in shortwave radiation penetrating into the ocean both result in a longer phytoplankton growing season in the Arctic. In turn, the increase in Arctic phytoplankton warms the ocean surface layer through direct biological heating, triggering additional positive feedbacks in the Arctic, and consequently intensifying the Arctic warming further. Our results establish the presence of marine phytoplankton as an important potential driver of the future Arctic climate changes.


Sign in / Sign up

Export Citation Format

Share Document