scholarly journals Filtration mapping as complete Bell state analyzer for bosonic particles

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
A. V. Kozubov ◽  
A. A. Gaidash ◽  
A. D. Kiselev ◽  
G. P. Miroshnichenko

AbstractIn this paper, we present the approach to complete Bell state analysis based on filtering mapping. The key distinctive feature of this appoach is that it avoids complications related to using either hyperentanglement or representation of the Bell states as concatenated Greenber–Horne–Zeilinger (C-GHZ) state to perform discrimination procedure. We describe two techniques developed within the suggested approach and based on two-step algorithms with two different types of filtration mapping which can be called the non-demolition and semi-demolition filtrations. In the method involving non-demolition filtration measurement the filtration process employs cross-Kerr nonlinearity and the probe mode to distinguish between the two pairs of the Bell states. In the case of semi-demolition measurement, the two states are unambiguously discriminated and hence destroyed, whereas filtraton keeps the other two states intact. We show that the measurement that destroys the single photon subspace in every mode and preserves the superposition of zero and two photons can be realized with discrete photodetection based on microresonator with atoms.

2021 ◽  
Author(s):  
A. V. Kozubov ◽  
A. A. Gaidash ◽  
A. D. Kiselev ◽  
G. P. Miroshnichenko

Abstract In this paper we present the approach to complete Bell state analysis based on filtering mapping. The key distinctive feature of this appoach is that it avoids complications related to using either hyperentanglement or representation of the Bell states as concatenated Greenber–Horne–Zeilinger (C-GHZ) state to perform discrimination procedure. We describe two techniques developed within the suggested approach and based on two-step algorithms with two different types of filtration mapping which can be called the non-demolition and semi-demolition filtrations. In the method involving non-demolition filtration measurement the filtration process employs cross-Kerr nonlinearity and the probe mode to distinguish between the two pairs of the Bell states. In the case of semi-demolition measurement, the two states are unambiguously discriminated and hence destroyed, whereas filtraton keeps the other two states intact. We show that the measurement that destroys the single photon subspace in every mode and preserves the superposition of zero and two photons can be realized with discrete photodetection based on microresonator with atoms.


2014 ◽  
Vol 14 (3&4) ◽  
pp. 236-254
Author(s):  
Xiao-Ming Xiu ◽  
Li Dong ◽  
Hong-Zhi Shen ◽  
Ya-Jun Gao ◽  
X. X. Yi

We propose a protocol of quantum privacy comparison with polarization-entangled Einstein-Podolsky-Rosen (Bell) states and the coherent states. One of two legitimate participants, Alice, prepares polarization-entangled Bell states and keeps one photon of each photon pair and sends the other photons to the third party, Charlie. Receiving the photons, Charlie performs single-photon transformation operations on them and then sends them to the other legitimate participant, Bob. Three participants adopt parity analysis method to check the distribution security of Bell states. Exploiting polarization beam splitters and nonlinear interactions mediated by the probe coherent states in Kerr media, Alice and Bob check the parities of their photons using the bases of $\{\ket H, \ket V\}$ or $\{\ket +, \ket -\}$. On the basis of the parity analysis outcomes and Charlie's publicized information, they can analyze the security of the distributed quantum channel. Confirming secure distribution of the shared Bell states, two participants perform respective parity measurements on the privacy photons and own photons of Bell states, and then send the results to Charlie. According to information provided by two legitimate participants and his single-qubit transformation operations, Charlie compares the privacy information of Alice and Bob and publicizes the conclusion.


2006 ◽  
Vol 04 (05) ◽  
pp. 769-779 ◽  
Author(s):  
FENZHUO GUO ◽  
TAILIN LIU ◽  
QIAOYAN WEN ◽  
FUCHEN ZHU

Based on entanglement swapping between two Bell states, two novel quantum key distribution protocols are proposed. One is for two-level systems, where there is no need for classical communication before each entanglement swapping. This feature is essential to its practical realization. Furthermore, to establish an arbitrarily long key, the protocol needs only two Bell states. The other is for d-level (d > 2) systems, in which higher security and higher source capacity are achieved. Using the theory of quadratic residue, we prove that in the two-qudit systems, each Bell state is a uniform superposition of all basis states in the dual basis, which is different to the situation in two-qubit systems. This difference means our two-level protocol cannot be generalized to the d-level situation directly. On the other hand, it results in higher security of our d-level protocol and is instructive to design quantum cryptography protocols.


2019 ◽  
Vol 33 (28) ◽  
pp. 1950347
Author(s):  
Gan Gao ◽  
Hong-Ru Song

In the paper [Mod. Phys. Lett. B 33 (2019) 1950023 ], Qin et al. proposed a three-party quantum secret sharing scheme based on [Formula: see text]-dimensional Bell states. We study the security of the proposed scheme and find that it is not secure, that is, one sharer can obtain Alice’s secret messages without the help of the other sharer.


2020 ◽  
Vol 6 (22) ◽  
pp. eaba4508 ◽  
Author(s):  
Giovanni Guccione ◽  
Tom Darras ◽  
Hanna Le Jeannic ◽  
Varun B. Verma ◽  
Sae Woo Nam ◽  
...  

Recent advances in quantum technologies are rapidly stimulating the building of quantum networks. With the parallel development of multiple physical platforms and different types of encodings, a challenge for present and future networks is to uphold a heterogeneous structure for full functionality and therefore support modular systems that are not necessarily compatible with one another. Central to this endeavor is the capability to distribute and interconnect optical entangled states relying on different discrete and continuous quantum variables. Here, we report an entanglement swapping protocol connecting such entangled states. We generate single-photon entanglement and hybrid entanglement between particle- and wave-like optical qubits and then demonstrate the heralded creation of hybrid entanglement at a distance by using a specific Bell-state measurement. This ability opens up the prospect of connecting heterogeneous nodes of a network, with the promise of increased integration and novel functionalities.


2012 ◽  
Vol 10 (02) ◽  
pp. 1250011 ◽  
Author(s):  
WEI XIONG ◽  
TAO WU ◽  
LIU YE

We propose a scheme for implementing a three-qubit controlled-Not-Not (CNNOT) gate and a two-qubit SWAP gate between atoms and single-photon pulse through cavity QED. In the scheme, we can one-step realize multiple-qubit GHZ state and two-qubit Bell state by applying multiple-qubits CNNOT gate. We have also shown that our scheme would be robust against practical imperfections in current cavity QED experiment setup through simple numerical estimates. Finally, we provide the current parameters to show that our scheme is feasible.


2005 ◽  
Vol 03 (03) ◽  
pp. 555-560 ◽  
Author(s):  
ZHAN-JUN ZHANG ◽  
ZHONG-XIAO MAN ◽  
SHOU-HUA SHI

We propose a quantum key distribution (QKD) scheme in which four parties can simultaneously share a secret key via optical device. The participants divide the communication into two modes, namely, detecting mode and message mode. Taking advantage of controlled secret short key technology, the participants together can achieve the detecting mode or the message mode by switching between their two sets of optical devices. In the detecting mode, the key distributer Alice utilizes a single-photon state resource and two beam splitters and the other three participants Bob, Charlie and Dick use first-type devices to detect the superposition of vacuum and single-particle states. Hence, any eavesdropping can be found by using a variant of Bell's inequality. In the message mode, Alice uses a two-photon Bell-state resource and two polarization beam splitters instead of the single-particle state resource and beam splitters used in the detecting mode and the other three participants use second-type devices to detect photons. In this case, the secret key can be successfully distributed from Alice to the other three ones. Moreover, the present four-party QKD scheme can be generalized to a 2n-party QKD scheme by using n-photon Greenberg–Horne–Zeilinger.


2014 ◽  
Vol 28 (05) ◽  
pp. 1450010
Author(s):  
WEIFANG ZHANG ◽  
DA-CHUANG LI ◽  
WEI XIONG ◽  
CUI-PING XU ◽  
HAO QIU ◽  
...  

We propose a protocol for realizing two entanglement concentration scheme with cross-Kerr nonlinearity and double cross-phase modulation method. In our protocols, two remote parties do not require the accurate information of the less entangled state and the double cross-phase modulation is introduced to overcome the errors caused by the imperfect Kerr interaction. By this way, a single-photon entanglement is concentrated, and a three-photon polarized GHZ state is also achieved. Furthermore this protocol can be scaled to multiphoton polarized GHZ state concentration and the giant Kerr media is not needed, which makes our protocols more feasible in experiment.


Author(s):  
Hyeck Soo Son ◽  
Jung Min Lee ◽  
Ramin Khoramnia ◽  
Chul Young Choi

Abstract Purpose To analyse and compare the surface topography and roughness of three different types of diffractive multifocal IOLs. Methods Using scanning electron microscope (SEM, Inspect F, 5.0 KV, maximum magnification up to 20,000) and atomic force microscope (AFM, Park Systems, XE-100, non-contact, area profile comparison, 10 × 10 µm, 40 × 40 µm), the surface quality of the following diffractive IOLs was studied: the AcrySof IQ PanOptix (Alcon, USA), the AT LARA 829MP (Carl Zeiss Meditec, Germany), and Tecnis Symfony (Johnson&Johnson Vision, USA). The measurements were made over three representative areas (central non-diffractive optic, central diffractive optic, and diffractive step) of each IOL. Roughness profile in terms of mean arithmetic roughness (Ra) and root-mean-squared roughness (Rq) values were obtained and compared statistically. Results In SEM examination, all IOLs showed a smooth optical surface without any irregularities at low magnification. At higher magnification, Tecnis Symfony showed unique highly regular, concentric, and lineate structures in the diffractive optic area which could not be seen in the other studied diffractive IOLs. The differences in the measured Ra and Rq values of the Tecnis Symfony were statistically significant compared to the other models (p < 0.05). Conclusion Various different topographical traits were observed in three diffractive multifocal IOLs. The Ra values of all studied IOLs were within an acceptable range. Tecnis Symfony showed statistically significant higher surface Ra values at both central diffractive optic and diffractive step areas. Furthermore, compared to its counterparts, Tecnis Symfony demonstrated highly ordered, concentric pattern in its diffractive surfaces.


Author(s):  
Seung Wan Hong ◽  
Tae Won Kim ◽  
Jae Hun Kim

Abstract Physicians and nurses stand with their back towards the C-arm fluoroscope when using the computer, taking things out of closets and preparing drugs for injection or instruments for intervention. This study was conducted to investigate the relationship between the type of lead apron and radiation exposure to the backs of physicians and nurses while using C-arm fluoroscopy. We compared radiation exposure to the back in the three groups: no lead apron (group C), front coverage type (group F) and wrap-around type (group W). The other wrap-around type apron was put on the bed instead of on a patient. We ran C-arm fluoroscopy 40 times for each measurement. We collected the air kerma (AK), exposure time (ET) and effective dose (ED) of the bedside table, upper part and lower part of apron. We measured these variables 30 times for each location. In group F, ED of the upper part was the highest (p &lt; 0.001). ED of the lower part in group C and F was higher than that in group W (p = 0.012). The radiation exposure with a front coverage type apron is higher than that of the wrap-around type and even no apron at the neck or thyroid. For reducing radiation exposure to the back of physician or nurse, the wrap-around type apron is recommended. This type of apron can reduce radiation to the back when the physician turns away from the patient or C-arm fluoroscopy.


Sign in / Sign up

Export Citation Format

Share Document