scholarly journals Transition between bipolar and abnormal bipolar resistive switching in amorphous oxides with a mobility edge

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Christiane Ader ◽  
Andreas Falkenstein ◽  
Manfred Martin

AbstractResistive switching is an important phenomenon for future memory devices such as resistance random access memories or neuronal networks. While there are different types of resistive switching, such as filament or interface switching, this work focuses on bulk switching in amorphous, binary oxides. Bulk switching was found experimentally in different oxides, for example in amorphous gallium oxide. The forms of the observed current–voltage curves differ, however, fundamentally. Even within the same material, both abnormal bipolar and normal bipolar resistive switching were found. Here, we use a new drift–diffusion model to theoretically investigate bulk switching in amorphous oxides where the electronic conductivity can be described by Mott’s concept of a mobility edge. We show not only that a strong, non-linear dependence of the electronic conductivity on the oxygen content is necessary for bulk switching but also that changing the geometry of the memristive device causes the transition between abnormal and normal bipolar switching.

2012 ◽  
Vol 605-607 ◽  
pp. 1944-1947
Author(s):  
Cheng Hu ◽  
Yong Dan Zhu

The bipolar resistive switching characteristic of Ag/poly-NiO/Nb:SrTiO3/In device has been investigated in this letter. The current-voltage characteristics of the device shows reproducible and pronounced bipolar resistive switching after 2V forming process and the resistive switching ratio RHRS/RLRS can reach 104 at the read voltage -0.5V. Multilevel memories can be realized by changing the max reverse voltages and show well retention characteristic even after several sweeping cycles. The results have been discussed in terms of carrier injection process via defects at the interface of the poly-NiO and Nb:SrTiO3.


Micromachines ◽  
2020 ◽  
Vol 11 (10) ◽  
pp. 905
Author(s):  
Junhyeok Choi ◽  
Sungjun Kim

In this work, the enhanced resistive switching of ZrN-based resistive switching memory is demonstrated by embedding TiO2 layer between Ag top electrode and ZrN switching layer. The Ag/ZrN/n-Si device exhibits unstable resistive switching as a result of the uncontrollable Ag migration. Both unipolar and bipolar resistive switching with high RESET current were observed. Negative-SET behavior in the Ag/ZrN/n-Si device makes set-stuck, causing permanent resistive switching failure. On the other hand, the analogue switching in the Ag/TiO2/ZrN/n-Si device, which could be adopted for the multi-bit data storage applications, is obtained. The gradual switching in Ag/TiO2/ZrN/n-Si device is achieved, possibly due to the suppressed Ag diffusion caused by TiO2 inserting layer. The current–voltage (I–V) switching characteristics of Ag/ZrN/n-Si and Ag/TiO2/ZrN/n-Si devices can be well verified by pulse transient. Finally, we established that the Ag/TiO2/ZrN/n-Si device is suitable for neuromorphic application through a comparison study of conductance update. This paper paves the way for neuromorphic application in nitride-based memristor devices.


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Sueda Saylan ◽  
Haila M. Aldosari ◽  
Khaled Humood ◽  
Maguy Abi Jaoude ◽  
Florent Ravaux ◽  
...  

Abstract This work provides useful insights into the development of HfO2-based memristive systems with a p-type silicon bottom electrode that are compatible with the complementary metal–oxide–semiconductor technology. The results obtained reveal the importance of the top electrode selection to achieve unique device characteristics. The Ag/HfO2/Si devices have exhibited a larger memory window and self-compliance characteristics. On the other hand, the Au/HfO2/Si devices have displayed substantial cycle-to-cycle variation in the ON-state conductance. These device characteristics can be used as an indicator for the design of resistive-switching devices in various scenes such as, memory, security, and sensing. The current–voltage (I–V) characteristics of Ag/HfO2/Si and Au/HfO2/Si devices under positive and negative bias conditions have provided valuable information on the ON and OFF states of the devices and the underlying resistive switching mechanisms. Repeatable, low-power, and forming-free bipolar resistive switching is obtained with both device structures, with the Au/HfO2/Si devices displaying a poorer device-to-device reproducibility. Furthermore, the Au/HfO2/Si devices have exhibited N-type negative differential resistance (NDR), suggesting Joule-heating activated migration of oxygen vacancies to be responsible for the SET process in the unstable unipolar mode.


2015 ◽  
Vol 22 (02) ◽  
pp. 1550031 ◽  
Author(s):  
PRANAB KUMAR SARKAR ◽  
ASIM ROY

This paper reports the bipolar resistive switching (BRS) characteristics in Al / Ti / TiO x/ HfO x/ Pt heterostructure during a DC sweep cycle with current compliance (CC) of 250 μA. The improvement in the switching performance in a CMOS compatible Al / Ti / TiO x/ HfO x/ Pt memory cell has been observed. The improvement is due to oxygen-rich HfO x layer insertion in simple metal-insulator-metal (MIM) sandwich structure. Analysis of current–voltage (I–V) characteristics revealed the trap-controlled space charge limited current (TC-SCLC) conduction mechanism is the most suitable mechanism signifying the dominant current conduction in all the bias regions and resistance states. Furthermore, this bilayer memory stack exhibits a tight distribution of switching parameters, good switching endurance up to 105 cycles, and good data retention of > 104 s at 85°C.


Crystals ◽  
2019 ◽  
Vol 9 (6) ◽  
pp. 318
Author(s):  
Lin ◽  
Wu ◽  
Chen

: In this work, the resistive switching characteristics of resistive random access memories (RRAMs) containing Sm2O3 and V2O5 films were investigated. All the RRAM structures made in this work showed stable resistive switching behavior. The High-Resistance State and Low-Resistance State of Resistive memory (RHRS/RLRS) ratio of the RRAM device containing a V2O5/Sm2O3 bilayer is one order of magnitude higher than that of the devices containing a single layer of V2O5 or Sm2O3. We also found that the stacking sequence of the Sm2O3 and V2O5 films in the bilayer structure can affect the switching features of the RRAM, causing them to exhibit both bipolar resistive switching (BRS) behavior and self-compliance behavior. The current conduction mechanisms of RRAM devices with different film structures were also discussed.


RSC Advances ◽  
2020 ◽  
Vol 10 (33) ◽  
pp. 19337-19345 ◽  
Author(s):  
Jameela Fatheema ◽  
Tauseef Shahid ◽  
Mohammad Ali Mohammad ◽  
Amjad Islam ◽  
Fouzia Malik ◽  
...  

The bipolar resistive switching of molybdenum oxide is deliberated while molybdenum and nickel are used as bottom and top electrodes, respectively, to present a device with resistive random access memory (RRAM) characteristics.


Sign in / Sign up

Export Citation Format

Share Document