scholarly journals Monocyte-dependent co-stimulation of cytokine induction in human γδ T cells by TLR8 RNA ligands

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Ruben Serrano ◽  
Christoph Coch ◽  
Christian Peters ◽  
Gunther Hartmann ◽  
Daniela Wesch ◽  
...  

AbstractHuman Vγ9Vδ2 T cells recognize pyrophosphates produced by microbes and transformed cells and play a role in anti-infective immunity and tumor surveillance. Toll-like receptors (TLR) are pattern recognition receptors in innate immune cells which sense microbial structures including nucleic acids. Given that γδ T cells are in clinical development for application in cellular cancer immunotherapy and TLR ligands have potent adjuvant activity, we investigated the co-stimulatory role of selected TLR ligands in γδ T-cell activation. Here we have used recently described RNA ligands for TLR7 and TLR8 together with Vγ9Vδ2 T-cell specific pyrophosphate antigens to analyze the rapid cytokine induction in Vδ2 T cells as well as the accessory cell requirements. While TLR8- as well as TLR7/8-specific RNA did not induce IFN-γ in Vδ2 T cells on their own, they provided strong co-stimulation for Vδ2 T cells within peripheral blood mononuclear cells in the presence of additional T-cell receptor activation. In contrast, TLR7 ligands were ineffective. Purified γδ T cells did not directly respond to TLR8 co-stimulation but required the presence of monocytes. Further experiments revealed a critical role of IL-1β and IL-18, and to a slightly lesser extent of IL-12p70, in the co-stimulation of Vδ2 T cells by TLR8 and TLR7/8 RNA ligands. Results of intracellular cytokine expression were validated by ELISA analysis of cytokines in cell culture supernatants. The cell context-dependent adjuvant activity of TLR8 and TLR7/8 RNA ligands described here might be important for the future optimization of γδ T-cell based cancer immunotherapy.

Blood ◽  
2014 ◽  
Vol 124 (21) ◽  
pp. 1411-1411 ◽  
Author(s):  
Anne Marijn Kramer ◽  
Mengyong Yan ◽  
Karl S Peggs ◽  
John Anderson ◽  
Kenth Gustafsson

Abstract Tumor-Associated Antigen Presentation by γδ T-Cells in Cancer Immunotherapy Human γδ T-cells are considered to represent a link between innate and adaptive immunity. Their innate killing properties display a potent cytotoxic activity against solid tumors as well as lymphoid and myeloid malignancies. Subsequently, by lysing affected target cells and liberating antigen for uptake, they can differentiate into professional antigen presenting cells (pAPCs) for induction of CD4+ and CD8+ T cell responses. The degree of antigen-specific stimulation of responder T cells is increased in the presence of antibody(Ab)-assisted opsonized target cells, involving the low-affinity receptor for IgG CD16 (Fc γRIII), equivalent to that seen with mature antigen-loaded DCs. To elaborate the implications of this combined killing and pAPC function we have studied how freshly isolated as well as expanded and cloned populations of γδ T-cell subsets kill a target tumor cell, and take up and cross-present tumor-associated antigens (TAA). We performed quantitative analysis on the cellular uptake of different sizes of microspheres, analyzing the correlation between opsonization and internalization. All γδ T-cell subtypes were expanded using artificial APC, engineered to express CD86, CD137L and IL-15, and anti- γδ TCR Ab (B1). Short (EAAGIGILTV) and long (GHSYTTAEEAAGIGILTVILGVLLL) MART-1 peptides were used as antigens for γδ T-cell presentation to MART-1 TCR-transduced cytotoxic T-cells. A CFSE assay was performed to assess cytotoxic T-cell proliferation. Target cells and polysterene microspheres were opsonized with human anti-CD20 IgG1, Rituximab (RTX). CD16 function was blocked with a mouse monoclonal IgG1 anti-CD16 blocking Ab (clone LNK16). Imaging flowcytometry allowed us to quantify internalization of FITC-labeled microspheres. The Internalization Score is defined as the ratio of intensity inside the cell to the intensity of the entire cell. Both γδ T-cell lines and expanded γδ T-cell clones cultured long-term, remarkably, retain both tumor cell killing and take up tumor cell lysates or long synthetic TAA peptides and cross-present these on MHC class I to CD8+ cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization. (Figure 1). The Ab-opsonization of 1 µm microspheres correlates with a higher receptor-mediated phagocytic uptake, in a CD16 dependent manner (Figure 2). The opsonization of 0,5 µm microspheres led to clumping of the microspheres, accounting for the lower uptake in this particular subgroup. For a lack of better alternative, moDCs have been widely used in experimental immunotherapy settings. The ease of manipulation of human γδ T-cells, the ability to be expanded ex-vivo combined with antigen presentation makes them a great potential tool for immunotherapy as a complementary or integrative strategy. Ligation of the γδ T-cell receptor at the tumor site will activate their expansion and innate killing. Yet, antigen presentation will only occur after binding of an immunoglobulin to the tumor cell, thereby activating their dual role. Our goal is to define an effective adjuvant vaccine formulation for inducing leukemia-specific cytolytic effects. We are currently investigating whether γδ T-cells can directly present and/or cross-present to cytotoxic T-cells in-vivo in a humanized mouse model. We believe that the uptake of microspheres by γδ T-cells has an impact on the development of vaccination strategies for cancer immunotherapy, as the immunization of γδ T-cells is a powerful method for the induction or reactivation of cytotoxic T cell specific responses. FIGURE 1 CFSE assay of γδ T-cell lines cross-presenting short and long MART-1 peptides to MART-1 TCR-transduced cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization FIGURE 1. CFSE assay of γδ T-cell lines cross-presenting short and long MART-1 peptides to MART-1 TCR-transduced cytotoxic T-cells in a dynamic, controllable fashion, dependent on Ab-opsonization FIGURE 2a FIGURE 2a. FIGURE 2b FIGURE 2b. Disclosures No relevant conflicts of interest to declare.


2021 ◽  
Vol 12 ◽  
Author(s):  
Weiwei Chen ◽  
Dengming Lai ◽  
Yuehua Li ◽  
Xueke Wang ◽  
Yihang Pan ◽  
...  

BackgroundStudies have revealed important roles for IL-17A in the development of acute lung injury (ALI) following sepsis. However, the mechanism underlying the regulation of lung IL-17A remains to be fully addressed. Recent studies suggested the effect of neuromedin U (NMU) on immune cell activation and the role of group 2 innate lymphoid cells (ILC2s) in the modulation of IL-17A production. We aimed to gain in-depth insight into the mechanism underlying sepsis-induced lung IL-17A production, particularly, the role of NMU in mediating neuronal regulation of ILC2s and IL-17A-producing γδ T cells activation in sepsis.MethodsWild type mice were subjected to cecal ligation and puncture (CLP) to induce sepsis with or without intraperitoneal injection of NMU. The levels of ILC2s, γδ T cells, IL-17A, NMU and NMU receptor 1 (NMUR1) in the lung were then measured. In order to determine the role of NMU signaling in ILC2 activation and the role of ILC2-released IL-9 in ILC2-γδ T cell interaction, ILC2s were sorted, and the genes of nmur1 and il9 in the ILC2s were knocked down using CRISPR/Cas9. The genetically manipulated ILC2s were then co-cultured with lung γδ T cells, and the levels of IL-17A from co-culture systems were measured.ResultsIn septic mice, the levels of NMU, IL-17A, ILC2s, and IL-17A-producing γδ T cells in the lung are significantly increased, and the expression of NMUR1 in ILC2s is increased as well. Exogenous NMU further augments these increases. The main source of IL-17A in response to CLP is γδ T cells, and lung nmur1 is specifically expressed in ILC2s. In vitro co-culture of ILC2s and γδ T cells leads to increased number of γδ T cells and higher production of IL-17A from γδ T cells, and these alterations are further augmented by septic treatment and exogenous NMU. Genetic knockdown of nmur1 or il9 in ILC2s attenuated the upregulation of γδ T cells and IL-17A production.ConclusionIn sepsis, NMU acting through NMUR1 in lung ILC2s initiates the ILC2 activation, which, in turn, promote IL-17A-producing γδ T cell expansion and secretion of IL-17A. ILC2-derived IL-9 plays an important role in mediating γδ T cell expansion and IL-17A production. This study explores a new mechanism underlying neuronal regulation of innate immunity in sepsis.


2021 ◽  
Vol 12 ◽  
Author(s):  
Leon Ullrich ◽  
Yvonne Lueder ◽  
Anna-Lena Juergens ◽  
Anneke Wilharm ◽  
Joana Barros-Martins ◽  
...  

The mucosal immune system is the first line of defense against pathogens. Germinal centers (GCs) in the Peyer’s patches (PPs) of the small intestine are constantly generated through stimulation of the microbiota. In this study, we investigated the role of γδ T cells in the GC reactions in PPs. Most γδ T cells in PPs localized in the GCs and expressed a TCR composed of Vγ1 and Vδ6 chains. By using mice with partial and total γδ T cell deficiencies, we found that Vγ1+/Vδ6+ T cells can produce high amounts of IL-4, which drives the proliferation of GC B cells as well as the switch of GC B cells towards IgA. Therefore, we conclude that γδ T cells play a role in sustaining gut homeostasis and symbiosis via supporting the GC reactions in PPs.


eLife ◽  
2014 ◽  
Vol 3 ◽  
Author(s):  
Xun Zeng ◽  
Christina Meyer ◽  
Jun Huang ◽  
Evan W Newell ◽  
Brian A Kidd ◽  
...  

The ability to recognize small organic molecules and chemical modifications of host molecules is an essential capability of the adaptive immune system, which until now was thought to be mediated mainly by B cell antigen receptors. Here we report that small molecules, such as cyanine 3 (Cy3), a synthetic fluorescent molecule, and 4-hydroxy-3-nitrophenylacetyl (NP), one of the most noted haptens, are γδ T cell antigens, recognized directly by specific γδ TCRs. Immunization with Cy3 conjugates induces a rapid Cy3-specific γδ T cell IL-17 response. These results expand the role of small molecules and chemical modifications in immunity and underscore the role of γδ T cells as unique adaptive immune cells that couple B cell-like antigen recognition capability with T cell effector function.


2021 ◽  
Author(s):  
Roshni Roy Chowdhury ◽  
John R Valainis ◽  
Oliver Kask ◽  
Mane Ohanyan ◽  
Meng Sun ◽  
...  

γδ T cells contribute to host immune defense uniquely; but how they function in different stages (e.g., acute versus chronic) of a specific infection remains unclear. As the role of γδ T cells in early, active Mycobacterium tuberculosis (Mtb) infection is well documented, we focused on elucidating the γδ T cell response in persistent or controlled Mtb infection. Systems analysis of circulating gd T cells from a South African adolescent cohort identified a distinct population of CD8+ γδ T cells that expanded in this state. These cells had features indicative of persistent antigenic exposure but were robust cytolytic effectors and cytokine/chemokine producers. While these γδ T cells displayed an attenuated response to TCR-mediated stimulation, they expressed Natural Killer (NK) cell receptors and had robust CD16 (FcgRIIIA)-mediated cytotoxic response, suggesting alternative ways for gd T cells to control this stage of the infection. Despite this NK-like functionality, the CD8+ γδ T cells consisted of highly expanded clones, which utilized TCRs with different Vg/d pairs. Theses TCRs could respond to an Mtb-lysate, but not to phosphoantigens, which are components of Mtb-lysate that activate gd T cells in acute Mtb infection, indicating that the CD8+ γδ T cells were induced in a stage-specific, antigen-driven manner. Indeed, trajectory analysis showed that these γδ T cells arose from naive cells that had traversed distinct differentiation paths in this infection stage. Importantly, increased levels of CD8+ γδ T cells were also found in other chronic inflammatory conditions, including cardiovascular disease and cancer, suggesting that persistent antigenic exposure may lead to similar γδ T cell responses.


F1000Research ◽  
2017 ◽  
Vol 6 ◽  
pp. 782 ◽  
Author(s):  
Dieter Kabelitz ◽  
Marcus Lettau ◽  
Ottmar Janssen

In contrast to conventional T lymphocytes, which carry an αβ T-cell receptor and recognize antigens as peptides presented by major histocompatibility complex class I or class II molecules, human γδ T cells recognize different metabolites such as non-peptidic pyrophosphate molecules that are secreted by microbes or overproduced by tumor cells. Hence, γδ T cells play a role in immunosurveillance of infection and cellular transformation. Until recently, it has been unknown how the γδ T-cell receptor senses such pyrophosphates in the absence of known antigen-presenting molecules. Recent studies from several groups have identified a unique role of butyrophilin (BTN) protein family members in this process, notably of BTN3A1. BTNs are a large family of transmembrane proteins with diverse functions in lipid secretion and innate and adaptive immunity. Here we discuss current models of how BTN molecules regulate γδ T-cell activation. We also address the implications of these recent findings on the design of novel immunotherapeutic strategies based on the activation of γδ T cells.


1998 ◽  
Vol 188 (7) ◽  
pp. 1375-1380 ◽  
Author(s):  
Baoping Wang ◽  
Ninghai Wang ◽  
Mariolina Salio ◽  
Arlene Sharpe ◽  
Deborah Allen ◽  
...  

CD3γ and CD3δ are two highly related components of the T cell receptor (TCR)–CD3 complex which is essential for the assembly and signal transduction of the T cell receptor on mature T cells. In gene knockout mice deficient in either CD3δ or CD3γ, early thymic development mediated by pre-TCR was either undisturbed or severely blocked, respectively, and small numbers of TCR-αβ+ T cells were detected in the periphery of both mice. γδ T cell development was either normal in CD3δ−/− mice or partially blocked in CD3γ−/− mice. To examine the collective role of CD3γ and CD3δ in the assembly and function of pre-TCR and in the development of γδ T cells, we generated a mouse strain with a disruption in both CD3γ and CD3δ genes (CD3γδ−/−). In contrast to mice deficient in either CD3γ or CD3δ chains, early thymic development mediated by pre-TCR is completely blocked, and TCR-αβ+ or TCR-γδ+ T cells were absent in the CD3γδ−/− mice. Taken together, these studies demonstrated that CD3γ and CD3δ play an essential, yet partially overlapping, role in the development of both αβ and γδ T cell lineages.


Author(s):  
Kristen Orumaa ◽  
Margaret R. Dunne

AbstractCOVID-19 is a respiratory disease caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). It was first documented in late 2019, but within months, a worldwide pandemic was declared due to the easily transmissible nature of the virus. Research to date on the immune response to SARS-CoV-2 has focused largely on conventional B and T lymphocytes. This review examines the emerging role of unconventional T cell subsets, including γδ T cells, invariant natural killer T (iNKT) cells and mucosal associated invariant T (MAIT) cells in human SARS-CoV-2 infection.Some of these T cell subsets have been shown to play protective roles in anti-viral immunity by suppressing viral replication and opsonising virions of SARS-CoV. Here, we explore whether unconventional T cells play a protective role in SARS-CoV-2 infection as well. Unconventional T cells are already under investigation as cell-based immunotherapies for cancer. We discuss the potential use of these cells as therapeutic agents in the COVID-19 setting. Due to the rapidly evolving situation presented by COVID-19, there is an urgent need to understand the pathogenesis of this disease and the mechanisms underlying its immune response. Through this, we may be able to better help those with severe cases and lower the mortality rate by devising more effective vaccines and novel treatment strategies.


2021 ◽  
Vol 9 (4) ◽  
pp. e002051
Author(s):  
Ryan Michael Reyes ◽  
Yilun Deng ◽  
Deyi Zhang ◽  
Niannian Ji ◽  
Neelam Mukherjee ◽  
...  

BackgroundAnti-programmed death-ligand 1 (αPD-L1) immunotherapy is approved to treat bladder cancer (BC) but is effective in <30% of patients. Interleukin (IL)-2/αIL-2 complexes (IL-2c) that preferentially target IL-2 receptor β (CD122) augment CD8+ antitumor T cells known to improve αPD-L1 efficacy. We hypothesized that the tumor microenvironment, including local immune cells in primary versus metastatic BC, differentially affects immunotherapy responses and that IL-2c effects could differ from, and thus complement αPD-L1.MethodsWe studied mechanisms of IL-2c and αPD-L1 efficacy using PD-L1+ mouse BC cell lines MB49 and MBT-2 in orthotopic (bladder) and metastatic (lung) sites.ResultsIL-2c reduced orthotopic tumor burden and extended survival in MB49 and MBT-2 BC models, similar to αPD-L1. Using antibody-mediated cell depletions and genetically T cell-deficient mice, we unexpectedly found that CD8+ T cells were not necessary for IL-2c efficacy against tumors in bladder, whereas γδ T cells, not reported to contribute to αPD-L1 efficacy, were indispensable for IL-2c efficacy there. αPD-L1 responsiveness in bladder required conventional T cells as expected, but not γδ T cells, altogether defining distinct mechanisms for IL-2c and αPD-L1 efficacy. γδ T cells did not improve IL-2c treatment of subcutaneously challenged BC or orthotopic (peritoneal) ovarian cancer, consistent with tissue-specific and/or tumor-specific γδ T cell contributions to IL-2c efficacy. IL-2c significantly altered bladder intratumoral γδ T cell content, activation status, and specific γδ T cell subsets with antitumor or protumor effector functions. Neither IL-2c nor αPD-L1 alone treated lung metastatic MB49 or MBT-2 BC, but their combination improved survival in both models. Combination treatment efficacy in lungs required CD8+ T cells but not γδ T cells.ConclusionsMechanistic insights into differential IL-2c and αPD-L1 treatment and tissue-dependent effects could help develop rational combination treatment strategies to improve treatment efficacy in distinct cancers. These studies also provide insights into γδ T cell contributions to immunotherapy in bladder and engagement of adaptive immunity by IL-2c plus αPD-L1 to treat refractory lung metastases.


Sign in / Sign up

Export Citation Format

Share Document