scholarly journals Machine learning-based preoperative datamining can predict the therapeutic outcome of sleep surgery in OSA subjects

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Jin Youp Kim ◽  
Hyoun-Joong Kong ◽  
Su Hwan Kim ◽  
Sangjun Lee ◽  
Seung Heon Kang ◽  
...  

AbstractIncreasing recognition of anatomical obstruction has resulted in a large variety of sleep surgeries to improve anatomic collapse of obstructive sleep apnea (OSA) and the prediction of whether sleep surgery will have successful outcome is very important. The aim of this study is to assess a machine learning-based clinical model that predict the success rate of sleep surgery in OSA subjects. The predicted success rate from machine learning and the predicted subjective surgical outcome from the physician were compared with the actual success rate in 163 male dominated-OSA subjects. Predicted success rate of sleep surgery from machine learning models based on sleep parameters and endoscopic findings of upper airway demonstrated higher accuracy than subjective predicted value of sleep surgeon. The gradient boosting model showed the best performance to predict the surgical success that is evaluated by pre- and post-operative polysomnography or home sleep apnea testing among the logistic regression and three machine learning models, and the accuracy of gradient boosting model (0.708) was significantly higher than logistic regression model (0.542). Our data demonstrate that the data mining-driven prediction such as gradient boosting exhibited higher accuracy for prediction of surgical outcome and we can provide accurate information on surgical outcomes before surgery to OSA subjects using machine learning models.

2020 ◽  
Vol 2020 ◽  
pp. 1-8
Author(s):  
Cheng Qu ◽  
Lin Gao ◽  
Xian-qiang Yu ◽  
Mei Wei ◽  
Guo-quan Fang ◽  
...  

Background. Acute kidney injury (AKI) has long been recognized as a common and important complication of acute pancreatitis (AP). In the study, machine learning (ML) techniques were used to establish predictive models for AKI in AP patients during hospitalization. This is a retrospective review of prospectively collected data of AP patients admitted within one week after the onset of abdominal pain to our department from January 2014 to January 2019. Eighty patients developed AKI after admission (AKI group) and 254 patients did not (non-AKI group) in the hospital. With the provision of additional information such as demographic characteristics or laboratory data, support vector machine (SVM), random forest (RF), classification and regression tree (CART), and extreme gradient boosting (XGBoost) were used to build models of AKI prediction and compared to the predictive performance of the classic model using logistic regression (LR). XGBoost performed best in predicting AKI with an AUC of 91.93% among the machine learning models. The AUC of logistic regression analysis was 87.28%. Present findings suggest that compared to the classical logistic regression model, machine learning models using features that can be easily obtained at admission had a better performance in predicting AKI in the AP patients.


Author(s):  
Derrick Lopez ◽  
Juan Lu ◽  
Frank Sanfilippo ◽  
Tom Briffa ◽  
Joe Hung ◽  
...  

IntroductionHospital administrative data is a valuable source to measure myocardial infarction (MI) rates. However, admission counts are susceptible to over-inflation if the patient is transferred multiple times during a single episode of care, and variables denoting transfers may not be reliable. To obtain an accurate number of events, hospital transfers need to be correctly identified. Objectives and ApproachWe assessed multivariable logistic regression and various machine-learning models to predict transfers in hospital administrative data. Using Western Australian linked hospital data, we identified records from 2000-2016 with a principal discharge diagnosis of MI. Our standard method to compare against was a 24-hour look-back to identify a transfer using just admission and separation dates from the current and previous records for the same patient. Multivariable logistic regression and decision trees with various boosting algorithms were used to predict if a single record was a transfer, using variables recorded in the admission (e.g. age, sex, type of hospital, admitted from, emergency/elective admission). The performance of each model was calculated using metrics including area under the curve (AUC). ResultsRecords in the training, validation and testing samples had similar characteristics: mean age=68.9 years, 66% were male and 58% admitted to tertiary hospitals. Gradient Boosting Decision Tree (AUC=0.887, 95%CI: 0.886-0.887) outperformed multivariable logistic regression (AUC=0.875; 95% CI: 0.869-0.881) and random forest models (AUC=0.859; 95% CI: 0.853-0.865). Conclusion / ImplicationsMultivariable logistic regression and machine-learning models are able to identify transfers in a single record from existing variables. They can be used in unlinked hospital administrative data where records belonging to the same patient cannot be identified.


2020 ◽  
Vol 25 (5) ◽  
pp. 637-644
Author(s):  
Shiva Prasad Satla ◽  
Manchala Sadanandam ◽  
Buradagunta Suvarna

Many vulnerable, heinous acts that are coming about in the society especially at Roads, most specifically affecting women in the society, are more in recent days. Though new technologies are developing day by day, the fatality rate is not in control to date. Without proper guidance to the people about the particular place where there is a big scope of occurrence of a greater number of accidents, this menace cannot be regulated. It is required to highlight the District-wise data and Roads where the accidents and fatalities are more. The data would help the policymakers to put in place Focused Initiatives regarding those top dangerous roads to address the menace of rising road accidents and resultant fatalities. In this, we created a dataset in Andhra Pradesh where we include those attributes that are helpful for our analysis to predict which road is the most dangerous one. We applied various Machine Learning models such as Logistic regression, Random forest classifier, Gradient Boosting Classifier, Gaussian Naive Bayes, Decision Tree Classifier, K- Nearest Neighbour Classifier and SVM to predict the dangerous roads. It is observed that Logistic Regression provides good accuracy with 87.14.


2020 ◽  
Vol 10 (3) ◽  
pp. 1151
Author(s):  
Hanna Kim ◽  
Young-Seob Jeong ◽  
Ah Reum Kang ◽  
Woohyun Jung ◽  
Yang Hoon Chung ◽  
...  

Tachycardia is defined as a heart rate greater than 100 bpm for more than 1 min. Tachycardia often occurs after endotracheal intubation and can cause serious complication in patients with cardiovascular disease. The ability to predict post-intubation tachycardia would help clinicians by notifying a potential event to pre-treat. In this paper, we predict the potential post-intubation tachycardia. Given electronic medical record and vital signs collected before tracheal intubation, we predict whether post-intubation tachycardia will occur within 10 min. Of 1931 available patient datasets, 257 remained after filtering those with inappropriate data such as outliers and inappropriate annotations. Three feature sets were designed using feature selection algorithms, and two additional feature sets were defined by statistical inspection or manual examination. The five feature sets were compared with various machine learning models such as naïve Bayes classifiers, logistic regression, random forest, support vector machines, extreme gradient boosting, and artificial neural networks. Parameters of the models were optimized for each feature set. By 10-fold cross validation, we found that an logistic regression model with eight-dimensional hand-crafted features achieved an accuracy of 80.5%, recall of 85.1%, precision of 79.9%, an F1 score of 79.9%, and an area under the receiver operating characteristic curve of 0.85.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Moojung Kim ◽  
Young Jae Kim ◽  
Sung Jin Park ◽  
Kwang Gi Kim ◽  
Pyung Chun Oh ◽  
...  

Abstract Background Annual influenza vaccination is an important public health measure to prevent influenza infections and is strongly recommended for cardiovascular disease (CVD) patients, especially in the current coronavirus disease 2019 (COVID-19) pandemic. The aim of this study is to develop a machine learning model to identify Korean adult CVD patients with low adherence to influenza vaccination Methods Adults with CVD (n = 815) from a nationally representative dataset of the Fifth Korea National Health and Nutrition Examination Survey (KNHANES V) were analyzed. Among these adults, 500 (61.4%) had answered "yes" to whether they had received seasonal influenza vaccinations in the past 12 months. The classification process was performed using the logistic regression (LR), random forest (RF), support vector machine (SVM), and extreme gradient boosting (XGB) machine learning techniques. Because the Ministry of Health and Welfare in Korea offers free influenza immunization for the elderly, separate models were developed for the < 65 and ≥ 65 age groups. Results The accuracy of machine learning models using 16 variables as predictors of low influenza vaccination adherence was compared; for the ≥ 65 age group, XGB (84.7%) and RF (84.7%) have the best accuracies, followed by LR (82.7%) and SVM (77.6%). For the < 65 age group, SVM has the best accuracy (68.4%), followed by RF (64.9%), LR (63.2%), and XGB (61.4%). Conclusions The machine leaning models show comparable performance in classifying adult CVD patients with low adherence to influenza vaccination.


SLEEP ◽  
2021 ◽  
Vol 44 (Supplement_2) ◽  
pp. A164-A164
Author(s):  
Pahnwat Taweesedt ◽  
JungYoon Kim ◽  
Jaehyun Park ◽  
Jangwoon Park ◽  
Munish Sharma ◽  
...  

Abstract Introduction Obstructive sleep apnea (OSA) is a common sleep-related breathing disorder with an estimation of one billion people. Full-night polysomnography is considered the gold standard for OSA diagnosis. However, it is time-consuming, expensive and is not readily available in many parts of the world. Many screening questionnaires and scores have been proposed for OSA prediction with high sensitivity and low specificity. The present study is intended to develop models with various machine learning techniques to predict the severity of OSA by incorporating features from multiple questionnaires. Methods Subjects who underwent full-night polysomnography in Torr sleep center, Texas and completed 5 OSA screening questionnaires/scores were included. OSA was diagnosed by using Apnea-Hypopnea Index ≥ 5. We trained five different machine learning models including Deep Neural Networks with the scaled principal component analysis (DNN-PCA), Random Forest (RF), Adaptive Boosting classifier (ABC), and K-Nearest Neighbors classifier (KNC) and Support Vector Machine Classifier (SVMC). Training:Testing subject ratio of 65:35 was used. All features including demographic data, body measurement, snoring and sleepiness history were obtained from 5 OSA screening questionnaires/scores (STOP-BANG questionnaires, Berlin questionnaires, NoSAS score, NAMES score and No-Apnea score). Performance parametrics were used to compare between machine learning models. Results Of 180 subjects, 51.5 % of subjects were male with mean (SD) age of 53.6 (15.1). One hundred and nineteen subjects were diagnosed with OSA. Area Under the Receiver Operating Characteristic Curve (AUROC) of DNN-PCA, RF, ABC, KNC, SVMC, STOP-BANG questionnaire, Berlin questionnaire, NoSAS score, NAMES score, and No-Apnea score were 0.85, 0.68, 0.52, 0.74, 0.75, 0.61, 0.63, 0,61, 0.58 and 0,58 respectively. DNN-PCA showed the highest AUROC with sensitivity of 0.79, specificity of 0.67, positive-predictivity of 0.93, F1 score of 0.86, and accuracy of 0.77. Conclusion Our result showed that DNN-PCA outperforms OSA screening questionnaires, scores and other machine learning models. Support (if any):


2021 ◽  
Vol 14 (1) ◽  
Author(s):  
Martine De Cock ◽  
Rafael Dowsley ◽  
Anderson C. A. Nascimento ◽  
Davis Railsback ◽  
Jianwei Shen ◽  
...  

Abstract Background In biomedical applications, valuable data is often split between owners who cannot openly share the data because of privacy regulations and concerns. Training machine learning models on the joint data without violating privacy is a major technology challenge that can be addressed by combining techniques from machine learning and cryptography. When collaboratively training machine learning models with the cryptographic technique named secure multi-party computation, the price paid for keeping the data of the owners private is an increase in computational cost and runtime. A careful choice of machine learning techniques, algorithmic and implementation optimizations are a necessity to enable practical secure machine learning over distributed data sets. Such optimizations can be tailored to the kind of data and Machine Learning problem at hand. Methods Our setup involves secure two-party computation protocols, along with a trusted initializer that distributes correlated randomness to the two computing parties. We use a gradient descent based algorithm for training a logistic regression like model with a clipped ReLu activation function, and we break down the algorithm into corresponding cryptographic protocols. Our main contributions are a new protocol for computing the activation function that requires neither secure comparison protocols nor Yao’s garbled circuits, and a series of cryptographic engineering optimizations to improve the performance. Results For our largest gene expression data set, we train a model that requires over 7 billion secure multiplications; the training completes in about 26.90 s in a local area network. The implementation in this work is a further optimized version of the implementation with which we won first place in Track 4 of the iDASH 2019 secure genome analysis competition. Conclusions In this paper, we present a secure logistic regression training protocol and its implementation, with a new subprotocol to securely compute the activation function. To the best of our knowledge, we present the fastest existing secure multi-party computation implementation for training logistic regression models on high dimensional genome data distributed across a local area network.


2021 ◽  
Vol 10 (1) ◽  
pp. 99
Author(s):  
Sajad Yousefi

Introduction: Heart disease is often associated with conditions such as clogged arteries due to the sediment accumulation which causes chest pain and heart attack. Many people die due to the heart disease annually. Most countries have a shortage of cardiovascular specialists and thus, a significant percentage of misdiagnosis occurs. Hence, predicting this disease is a serious issue. Using machine learning models performed on multidimensional dataset, this article aims to find the most efficient and accurate machine learning models for disease prediction.Material and Methods: Several algorithms were utilized to predict heart disease among which Decision Tree, Random Forest and KNN supervised machine learning are highly mentioned. The algorithms are applied to the dataset taken from the UCI repository including 294 samples. The dataset includes heart disease features. To enhance the algorithm performance, these features are analyzed, the feature importance scores and cross validation are considered.Results: The algorithm performance is compared with each other, so that performance based on ROC curve and some criteria such as accuracy, precision, sensitivity and F1 score were evaluated for each model. As a result of evaluation, Accuracy, AUC ROC are 83% and 99% respectively for Decision Tree algorithm. Logistic Regression algorithm with accuracy and AUC ROC are 88% and 91% respectively has better performance than other algorithms. Therefore, these techniques can be useful for physicians to predict heart disease patients and prescribe them correctly.Conclusion: Machine learning technique can be used in medicine for analyzing the related data collections to a disease and its prediction. The area under the ROC curve and evaluating criteria related to a number of classifying algorithms of machine learning to evaluate heart disease and indeed, the prediction of heart disease is compared to determine the most appropriate classification. As a result of evaluation, better performance was observed in both Decision Tree and Logistic Regression models.


Energies ◽  
2021 ◽  
Vol 14 (23) ◽  
pp. 7834
Author(s):  
Christopher Hecht ◽  
Jan Figgener ◽  
Dirk Uwe Sauer

Electric vehicles may reduce greenhouse gas emissions from individual mobility. Due to the long charging times, accurate planning is necessary, for which the availability of charging infrastructure must be known. In this paper, we show how the occupation status of charging infrastructure can be predicted for the next day using machine learning models— Gradient Boosting Classifier and Random Forest Classifier. Since both are ensemble models, binary training data (occupied vs. available) can be used to provide a certainty measure for predictions. The prediction may be used to adapt prices in a high-load scenario, predict grid stress, or forecast available power for smart or bidirectional charging. The models were chosen based on an evaluation of 13 different, typically used machine learning models. We show that it is necessary to know past charging station usage in order to predict future usage. Other features such as traffic density or weather have a limited effect. We show that a Gradient Boosting Classifier achieves 94.8% accuracy and a Matthews correlation coefficient of 0.838, making ensemble models a suitable tool. We further demonstrate how a model trained on binary data can perform non-binary predictions to give predictions in the categories “low likelihood” to “high likelihood”.


Sign in / Sign up

Export Citation Format

Share Document