scholarly journals A novel and efficient approach to high-throughput production of HLA-E/peptide monomer for T-cell epitope screening

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Juliette Vaurs ◽  
Gaël Douchin ◽  
Klara Echasserieau ◽  
Romain Oger ◽  
Nicolas Jouand ◽  
...  

AbstractOver the past two decades, there has been a great interest in the study of HLA-E-restricted αβ T cells during bacterial and viral infections, including recently SARS-CoV-2 infection. Phenotyping of these specific HLA-E-restricted T cells requires new tools such as tetramers for rapid cell staining or sorting, as well as for the identification of new peptides capable to bind to the HLA-E pocket. To this aim, we have developed an optimal photosensitive peptide to generate stable HLA-E/pUV complexes allowing high-throughput production of new HLA-E/peptide complexes by peptide exchange. We characterized the UV exchange by ELISA and improved the peptide exchange readout using size exclusion chromatography. This novel approach for complex quantification is indeed very important to perform tetramerization of MHC/peptide complexes with the high quality required for detection of specific T cells. Our approach allows the rapid screening of peptides capable of binding to the non-classical human HLA-E allele, paving the way for the development of new therapeutic approaches based on the detection of HLA-E-restricted T cells.

2021 ◽  
Vol 11 ◽  
Author(s):  
Kingsley Gideon Kumashie ◽  
Marcin Cebula ◽  
Claudia Hagedorn ◽  
Florian Kreppel ◽  
Marina C. Pils ◽  
...  

Chronic hepatotropic viral infections are characterized by exhausted CD8+ T cells in the presence of cognate antigen in the liver. The impairment of T cell response limits the control of chronic hepatotropic viruses. Immune-modulatory strategies are attractive options to re-invigorate exhausted T cells. However, in hepatotropic viral infections, the knowledge about immune-modulatory effects on the in-situ regulation of exhausted intrahepatic CD8+ T cells is limited. In this study, we elucidated the functional heterogeneity in the pool of exhausted CD8+ T cells in the liver of mice expressing the model antigen Ova in a fraction of hepatocytes. We found a subpopulation of intrahepatic CXCR5+ Ova-specific CD8+ T cells, which are profoundly cytotoxic, exhibiting efficient metabolic functions as well as improved memory recall and self-maintenance. The intrahepatic Ova-specific CXCR5+ CD8+ T cells are possibly tissue resident cells, which may rely largely on OXPHOS and glycolysis to fuel their cellular processes. Importantly, host conditioning with CpG oligonucleotide reinvigorates and promotes exhausted T cell expansion, facilitating complete antigen eradication. The CpG oligonucleotide-mediated reinvigoration may support resident memory T cell formation and the maintenance of CXCR5+ Ova-specific CD8+ T cells in the liver. These findings suggest that CpG oligodinucleotide may preferentially target CXCR5+ CD8+ T cells for expansion to facilitate the revival of exhausted T cells. Thus, therapeutic strategies aiming to expand CXCR5+ CD8+ T cells might provide a novel approach against chronic liver infection.


Gut ◽  
2015 ◽  
Vol 66 (3) ◽  
pp. 454-463 ◽  
Author(s):  
Daniele Mennonna ◽  
Cristina Maccalli ◽  
Michele C Romano ◽  
Claudio Garavaglia ◽  
Filippo Capocefalo ◽  
...  

ObjectivePatient-specific (unique) tumour antigens, encoded by somatically mutated cancer genes, generate neoepitopes that are implicated in the induction of tumour-controlling T cell responses. Recent advancements in massive DNA sequencing combined with robust T cell epitope predictions have allowed their systematic identification in several malignancies.DesignWe undertook the identification of unique neoepitopes in colorectal cancers (CRCs) by using high-throughput sequencing of cDNAs expressed by standard cancer cell cultures, and by related cancer stem/initiating cells (CSCs) cultures, coupled with a reverse immunology approach not requiring human leukocyte antigen (HLA) allele-specific epitope predictions.ResultsSeveral unique mutated antigens of CRC, shared by standard cancer and related CSC cultures, were identified by this strategy. CD8+and CD4+T cells, either autologous to the patient or derived from HLA-matched healthy donors, were readily expanded in vitro by peptides spanning different cancer mutations and specifically recognised differentiated cancer cells and CSC cultures, expressing the mutations. Neoepitope-specific CD8+T cell frequency was also increased in a patient, compared with healthy donors, supporting the occurrence of clonal expansion in vivo.ConclusionsThese results provide a proof-of-concept approach for the identification of unique neoepitopes that are immunogenic in patients with CRC and can also target T cells against the most aggressive CSC component.


2007 ◽  
Vol 88 (5) ◽  
pp. 1589-1593 ◽  
Author(s):  
Chiara Nenci ◽  
Marie-Luise Zahno ◽  
Hans-Rudolf Vogt ◽  
Gabriela Obexer-Ruff ◽  
Marcus G. Doherr ◽  
...  

CD4+ T cells are involved in several immune response pathways used to control viral infections. In this study, a group of genetically defined goats was immunized with a synthetic peptide known to encompass an immunodominant helper T-cell epitope of caprine arthritis encephalitis virus (CAEV). Fifty-five days after challenge with the molecularly cloned CAEV strain CO, the vaccinated animals had a higher proviral load than the controls. The measurement of gamma interferon and interleukin-4 gene expression showed that these cytokines were reliable markers of an ongoing immune response but their balance did not account for more or less efficient control of CAEV replication. In contrast, granulocyte–macrophage colony-stimulating factor appeared to be a key cytokine that might support virus replication in the early phase of infection. The observation of a potential T-cell-mediated enhancement of virus replication supports other recent findings showing that lentivirus-specific T cells can be detrimental to the host, suggesting caution in designing vaccine candidates.


2018 ◽  
Vol 92 (8) ◽  
pp. e02156-17 ◽  
Author(s):  
Patricia P. Lopes ◽  
George Todorov ◽  
Thanh T. Pham ◽  
Anthony B. Nesburn ◽  
Elmostafa Bahraoui ◽  
...  

ABSTRACTThere is an urgent need for chemical-free and biological-free safe adjuvants to enhance the immunogenicity of vaccines against widespread viral pathogens, such as herpes simplex virus 2 (HSV-2), that infect a large proportion of the world human population. In the present study, we investigated the safety, immunogenicity, and protective efficacy of a laser adjuvant-assisted peptide (LAP) vaccine in the B6 mouse model of genital herpes. This LAP vaccine and its laser-free peptide (LFP) vaccine analog contain the immunodominant HSV-2 glycoprotein B CD8+T cell epitope (HSV-gB498–505) covalently linked with the promiscuous glycoprotein D CD4+T helper cell epitope (HSV-gD49–89). Prior to intradermal delivery of the LAP vaccine, the lower-flank shaved skin of B6 or CD11c/eYFP transgenic mice received a topical skin treatment with 5% imiquimod cream and then was exposed for 60 s to a laser, using the FDA-approved nonablative diode. Compared to the LFP vaccine, the LAP vaccine (i) triggered mobilization of dendritic cells (DCs) in the skin, which formed small spots along the laser-treated areas, (ii) induced phenotypic and functional maturation of DCs, (iii) stimulated long-lasting HSV-specific effector memory CD8+T cells (TEMcells) and tissue-resident CD8+T cells (TRMcells) locally in the vaginal mucocutaneous tissues (VM), and (iv) induced protective immunity against genital herpes infection and disease. As an alternative to currently used conventional adjuvants, the chemical- and biological-free laser adjuvant offers a well-tolerated, simple-to-produce method to enhance mass vaccination for widespread viral infections.IMPORTANCEHerpes simplex viruses 1 and 2 (HSV-1 and HSV-2) infect a large proportion of the world population. There is an urgent need for chemical-free and biological-free safe adjuvants that would advance mass vaccination against the widespread herpes infections. The present study demonstrates that immunization with a laser-assisted herpes peptide vaccine triggered skin mobilization of dendritic cells (DCs) that stimulated strong and long-lasting HSV-specific effector memory CD8+T cells (TEMcells) and tissue-resident CD8+T cells (TRMcells) locally in the vaginal mucocutaneous tissues. The induced local CD8+T cell response was associated with protection against genital herpes infection and disease. These results draw attention to chemical- and biological-free laser adjuvants as alternatives to currently used conventional adjuvants to enhance mass vaccination for widespread viral infections, such as those caused by HSV-1 and HSV-2.


Author(s):  
Sine Reker Hadrup ◽  
Mireille Toebes ◽  
Boris Rodenko ◽  
Arnold H. Bakker ◽  
David A. Egan ◽  
...  

2021 ◽  
Vol 12 ◽  
Author(s):  
Johannes Fessler ◽  
Stefano Angiari

Immunosenescence is a state of dysregulated leukocyte function characterised by arrested cell cycle, telomere shortening, expression of markers of cellular stress, and secretion of pro-inflammatory mediators. Immunosenescence principally develops during aging, but it may also be induced in other pathological settings, such as chronic viral infections and autoimmune diseases. Appearance of senescent immune cells has been shown to potentially cause chronic inflammation and tissue damage, suggesting an important role for this process in organismal homeostasis. In particular, the presence of senescent T lymphocytes has been reported in neurological diseases, with some works pointing towards a direct connection between T cell senescence, inflammation and neuronal damage. In this minireview, we provide an overview on the role of T cell senescence in neurological disorders, in particular in multiple sclerosis and Alzheimer disease. We also discuss recent literature investigating how metabolic remodelling controls the development of a senescence phenotype in T cells. Targeting metabolic pathways involved in the induction of senescent T cells may indeed represent a novel approach to limit their inflammatory activity and prevent neuroinflammation and neurodegeneration.


Sign in / Sign up

Export Citation Format

Share Document