scholarly journals A comparative recombination analysis of human coronaviruses and implications for the SARS-CoV-2 pandemic

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Simon Pollett ◽  
Matthew A. Conte ◽  
Mark Sanborn ◽  
Richard G. Jarman ◽  
Grace M. Lidl ◽  
...  

AbstractThe SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in the non-ORF1 region of the genome containing structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.

2021 ◽  
Author(s):  
Simon Pollett ◽  
Matthew A Conte ◽  
Mark Sanborn ◽  
Richard G Jarman ◽  
Grace M. Lidl ◽  
...  

ABSTRACTThe SARS-CoV-2 pandemic prompts evaluation of recombination in human coronavirus (hCoV) evolution. We undertook recombination analyses of 158,118 public seasonal hCoV, SARS-CoV-1, SARS-CoV-2 and MERS-CoV genome sequences using the RDP4 software. We found moderate evidence for 8 SARS-CoV-2 recombination events, two of which involved the spike gene, and low evidence for one SARS-CoV-1 recombination event. Within MERS-CoV, 229E, OC43, NL63 and HKU1 datasets, we noted 7, 1, 9, 14, and 1 high-confidence recombination events, respectively. There was propensity for recombination breakpoints in structural genes, and recombination severely skewed the temporal structure of these data, especially for NL63 and OC43. Bayesian time-scaled analyses on recombinant-free data indicated the sampled diversity of seasonal CoVs emerged in the last 70 years, with 229E displaying continuous lineage replacements. These findings emphasize the importance of genomic based surveillance to detect recombination in SARS-CoV-2, particularly if recombination may lead to immune evasion.


2012 ◽  
Vol 93 (11) ◽  
pp. 2387-2398 ◽  
Author(s):  
Samuel R. Dominguez ◽  
Gregory E. Sims ◽  
David E. Wentworth ◽  
Rebecca A. Halpin ◽  
Christine C. Robinson ◽  
...  

This study compared the complete genome sequences of 16 NL63 strain human coronaviruses (hCoVs) from respiratory specimens of paediatric patients with respiratory disease in Colorado, USA, and characterized the epidemiology and clinical characteristics associated with circulating NL63 viruses over a 3-year period. From 1 January 2009 to 31 December 2011, 92 of 9380 respiratory specimens were found to be positive for NL63 RNA by PCR, an overall prevalence of 1 %. NL63 viruses were circulating during all 3 years, but there was considerable yearly variation in prevalence and the month of peak incidence. Phylogenetic analysis comparing the genome sequences of the 16 Colorado NL63 viruses with those of the prototypical hCoV-NL63 and three other NL63 viruses from the Netherlands demonstrated that there were three genotypes (A, B and C) circulating in Colorado from 2005 to 2010, and evidence of recombination between virus strains was found. Genotypes B and C co-circulated in Colorado in 2005, 2009 and 2010, but genotype A circulated only in 2005 when it was the predominant NL63 strain. Genotype C represents a new lineage that has not been described previously. The greatest variability in the NL63 virus genomes was found in the N-terminal domain (NTD) of the spike gene (nt 1–600, aa 1–200). Ten different amino acid sequences were found in the NTD of the spike protein among these NL63 strains and the 75 partial published sequences of NTDs from strains found at different times throughout the world.


2020 ◽  
Author(s):  
Alan T Evangelista

UNSTRUCTURED The seasonality of influenza viruses and endemic human coronaviruses was tracked over an 8-year period to assess key epidemiologic reduction points in disease incidence for an urban area in the northeast United States. Patients admitted to a pediatric hospital with worsening respiratory symptoms were tested using a multiplex PCR assay from nasopharyngeal swabs. The additive seasonal effects of outdoor temperatures and indoor relative humidity (RH) were evaluated. The 8-year average peak activity of human coronaviruses occurred in the first week of January, when droplet and contact transmission was enabled by the low indoor RH of 20-30%. Previous studies have shown that an increase in RH to 50% has been associated with markedly reduced viability and transmission of influenza virus and animal coronaviruses. As disease incidence was reduced by 50% in early March, to 75% in early April, to greater than 99% at the end of April, a relationship was observed from colder temperatures in January with a low indoor RH to a gradual increase in outdoor temperatures in April with an indoor RH of 45-50%. As a lipid-bound, enveloped virus with similar size characteristics to endemic human coronaviruses, SARS-CoV-2 should be subject to the same dynamics of reduced viability and transmission with increased humidity. In addition to the major role of social distancing, the transition from lower to higher indoor RH with increasing outdoor temperatures could have an additive effect on the decrease in SARS-CoV-2 cases in May. Over the 8-year period of this study, human coronavirus activity was either zero or >99% reduction in the months of June through September, and the implication would be that SARS-Cov-2 may follow a similar pattern. INTERNATIONAL REGISTERED REPORT RR2-doi.org/10.1101/2020.05.15.20103416


BMC Biology ◽  
2021 ◽  
Vol 19 (1) ◽  
Author(s):  
Andra Waagmeester ◽  
Egon L. Willighagen ◽  
Andrew I. Su ◽  
Martina Kutmon ◽  
Jose Emilio Labra Gayo ◽  
...  

Abstract Background Pandemics, even more than other medical problems, require swift integration of knowledge. When caused by a new virus, understanding the underlying biology may help finding solutions. In a setting where there are a large number of loosely related projects and initiatives, we need common ground, also known as a “commons.” Wikidata, a public knowledge graph aligned with Wikipedia, is such a commons and uses unique identifiers to link knowledge in other knowledge bases. However, Wikidata may not always have the right schema for the urgent questions. In this paper, we address this problem by showing how a data schema required for the integration can be modeled with entity schemas represented by Shape Expressions. Results As a telling example, we describe the process of aligning resources on the genomes and proteomes of the SARS-CoV-2 virus and related viruses as well as how Shape Expressions can be defined for Wikidata to model the knowledge, helping others studying the SARS-CoV-2 pandemic. How this model can be used to make data between various resources interoperable is demonstrated by integrating data from NCBI (National Center for Biotechnology Information) Taxonomy, NCBI Genes, UniProt, and WikiPathways. Based on that model, a set of automated applications or bots were written for regular updates of these sources in Wikidata and added to a platform for automatically running these updates. Conclusions Although this workflow is developed and applied in the context of the COVID-19 pandemic, to demonstrate its broader applicability it was also applied to other human coronaviruses (MERS, SARS, human coronavirus NL63, human coronavirus 229E, human coronavirus HKU1, human coronavirus OC4).


Molecules ◽  
2021 ◽  
Vol 26 (2) ◽  
pp. 448
Author(s):  
Konstantina Vougogiannopoulou ◽  
Angela Corona ◽  
Enzo Tramontano ◽  
Michael N. Alexis ◽  
Alexios-Leandros Skaltsounis

The ongoing pandemic of severe acute respiratory syndrome (SARS), caused by the SARS-CoV-2 human coronavirus (HCoV), has brought the international scientific community before a state of emergency that needs to be addressed with intensive research for the discovery of pharmacological agents with antiviral activity. Potential antiviral natural products (NPs) have been discovered from plants of the global biodiversity, including extracts, compounds and categories of compounds with activity against several viruses of the respiratory tract such as HCoVs. However, the scarcity of natural products (NPs) and small-molecules (SMs) used as antiviral agents, especially for HCoVs, is notable. This is a review of 203 publications, which were selected using PubMed/MEDLINE, Web of Science, Scopus, and Google Scholar, evaluates the available literature since the discovery of the first human coronavirus in the 1960s; it summarizes important aspects of structure, function, and therapeutic targeting of HCoVs as well as NPs (19 total plant extracts and 204 isolated or semi-synthesized pure compounds) with anti-HCoV activity targeting viral and non-viral proteins, while focusing on the advances on the discovery of NPs with anti-SARS-CoV-2 activity, and providing a critical perspective.


2007 ◽  
Vol 88 (12) ◽  
pp. 3347-3359 ◽  
Author(s):  
Rowena A. Bull ◽  
Mark M. Tanaka ◽  
Peter A. White

RNA recombination is a significant driving force in viral evolution. Increased awareness of recombination within the genus Norovirus of the family Calicivirus has led to a rise in the identification of norovirus (NoV) recombinants and they are now reported at high frequency. Currently, there is no classification system for recombinant NoVs and a widely accepted recombinant genotyping system is still needed. Consequently, there is duplication in reporting of novel recombinants. This has led to difficulties in defining the number and types of recombinants in circulation. In this study, 120 NoV nucleotide sequences were compiled from the current GenBank database and published literature. NoV recombinants and their recombination breakpoints were identified using three methods: phylogenetic analysis, SimPlot analysis and the maximum χ 2 method. A total of 20 NoV recombinant types were identified in circulation worldwide. The recombination point is the ORF1/2 overlap in all isolates except one, which demonstrated a double recombination event within the polymerase region.


2020 ◽  
Vol 7 (11) ◽  
Author(s):  
Sangshin Park ◽  
Yeonjin Lee ◽  
Ian C Michelow ◽  
Young June Choe

Abstract In the context of the coronavirus disease 2019 pandemic, we aimed to systematically address the global seasonal patterns of human coronavirus (HCoV) infections. We identified relevant articles from MEDLINE, EMBASE, and CINAHL Plus as of May 11, 2020. The main outcomes were the peak months of HCoV infections each year and the months during which more than 5% of positive respiratory specimen tests were attributable to HCoV. Of 707 articles reviewed, 22 met the inclusion criteria. The annual percentage of HCoV infections reached a peak in February globally. We found a higher HCoV positivity rate among studies that tested only children (median: 5.9%, range: 0.9%–18.4%), compared with other studies of adults alone (median: 5.2%, range: 3.3%–7.1%) or the entire population (median: 1.9%, range: 0.2%–8.1%). We found the largest global peak of HCoV during the winter season, with the highest rate of positivity among children.


2020 ◽  
Vol 94 (18) ◽  
Author(s):  
Xuesen Zhao ◽  
Shuangli Zheng ◽  
Danying Chen ◽  
Mei Zheng ◽  
Xinglin Li ◽  
...  

ABSTRACT C3A is a subclone of the human hepatoblastoma HepG2 cell line with strong contact inhibition of growth. We fortuitously found that C3A was more susceptible to human coronavirus HCoV-OC43 infection than HepG2, which was attributed to the increased efficiency of virus entry into C3A cells. In an effort to search for the host cellular protein(s) mediating the differential susceptibility of the two cell lines to HCoV-OC43 infection, we found that ArfGAP with dual pleckstrin homology (PH) domains 2 (ADAP2), gamma-interferon-inducible lysosome/endosome-localized thiolreductase (GILT), and lymphocyte antigen 6 family member E (LY6E), the three cellular proteins identified to function in interference with virus entry, were expressed at significantly higher levels in HepG2 cells. Functional analyses revealed that ectopic expression of LY6E, but not GILT or ADAP2, in HEK 293 cells inhibited the entry of HCoV-O43. While overexpression of LY6E in C3A and A549 cells efficiently inhibited the infection of HCoV-OC43, knockdown of LY6E expression in HepG2 significantly increased its susceptibility to HCoV-OC43 infection. Moreover, we found that LY6E also efficiently restricted the entry mediated by the envelope spike proteins of other human coronaviruses, including the currently pandemic SARS-CoV-2. Interestingly, overexpression of serine protease TMPRSS2 or amphotericin treatment significantly neutralized the IFN-inducible transmembrane 3 (IFITM3) restriction of human coronavirus (CoV) entry, but did not compromise the effect of LY6E on the entry of human coronaviruses. The work reported herein thus demonstrates that LY6E is a critical antiviral immune effector that controls CoV infection and pathogenesis via a mechanism distinct from other factors that modulate CoV entry. IMPORTANCE Virus entry into host cells is one of the key determinants of host range and cell tropism and is subjected to the control of host innate and adaptive immune responses. In the last decade, several interferon-inducible cellular proteins, including IFITMs, GILT, ADAP2, 25CH, and LY6E, had been identified to modulate the infectious entry of a variety of viruses. Particularly, LY6E was recently identified as a host factor that facilitates the entry of several human-pathogenic viruses, including human immunodeficiency virus, influenza A virus, and yellow fever virus. Identification of LY6E as a potent restriction factor of coronaviruses expands the biological function of LY6E and sheds new light on the immunopathogenesis of human coronavirus infection.


2020 ◽  
Vol 6 (1) ◽  
Author(s):  
Carol A Abidha ◽  
Joyce Nyiro ◽  
Everlyn Kamau ◽  
Osman Abdullahi ◽  
David James Nokes ◽  
...  

Abstract Human coronavirus OC43 (HCoV-OC43) is a major contributor to seasonal outbreaks of acute respiratory illness (ARI). The origins of locally circulating HCoV-OC43 strains and characteristics of their genetic diversity are unknown for most settings despite significance to effective HCoV control strategies. Between December 2015 and June 2016, we undertook ARI surveillance in coastal Kenya in nine outpatients and one inpatient health facility (HF). Ninety-two patient samples tested HCoV-OC43 positive and forty (43.5%) were successfully sequenced in spike (S) gene region (2,864 long, ∼70%). Phylogenetic analysis confirmed co-circulation of two distinct HCoV-OC43 clades that closely clustered with genotype G (n = 34, 85%) and genotype H (n = 6, 15%) reference strains. Local viruses within the same clade displayed low genetic diversity yielding identical sequences in multiple HF. Furthermore, the newly sequenced Kenyan viruses showed close phylogenetic relationship to other contemporaneous sampled strains (2015–16) including those originating from distant places (e.g. USA and China). Using a genetic similarity threshold of 99.1 per cent at nucleotide level, the HCoV-OC43 strains sampled globally between 1967 and 2019 fell into nine sequence clusters. Notably, some of these clusters appeared to have become extinct, or occurred only sporadically in a few geographical areas while others persisted globally for multiple years. In conclusion, we found that HCoV-OC43 strains spread rapidly both locally and across the globe with limited genetic evolution in the spike gene. Full-genome sequences that are spatio-temporally representative are required to advance understanding of the transmission pathways of this important human respiratory pathogen.


2006 ◽  
Vol 87 (5) ◽  
pp. 1203-1208 ◽  
Author(s):  
Doris Chibo ◽  
Chris Birch

Historically, coronaviruses have been recognized as a cause of minor respiratory infections in humans. However, the recent identification of three novel human coronaviruses, one causing severe acute respiratory syndrome (SARS), has prompted further examination of these viruses. Previous studies of geographically and chronologically distinct Human coronavirus 229E (HCoV-229E) isolates have found only limited variation within S gene nucleotide sequences. In contrast, analysis of the S genes of contemporary Human coronavirus OC43 variants identified in Belgium revealed two distinct viruses circulating during 2003 and 2004. Here, the S and N gene sequences of 25 HCoV-229E variants identified in Victoria, Australia, between 1979 and 2004 in patients with symptomatic infections were determined. Phylogenetic analysis showed clustering of the isolates into four groups, with evidence of increasing divergence with time. Evidence of positive selection in the S gene was also established.


Sign in / Sign up

Export Citation Format

Share Document