scholarly journals Empagliflozin maintains capillarization and improves cardiac function in a murine model of left ventricular pressure overload

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Masaaki Nakao ◽  
Ippei Shimizu ◽  
Goro Katsuumi ◽  
Yohko Yoshida ◽  
Masayoshi Suda ◽  
...  

AbstractPatients with type 2 diabetes treated with Sodium glucose transporter 2 (SGLT2) inhibitors show reduced mortality and hospitalization for heart failure (HF). SGLT2 inhibitors are considered to activate multiple cardioprotective pathways; however, underlying mechanisms are not fully described. This study aimed to elucidate the underlying mechanisms of the beneficial effects of SGLT2 inhibitors on the failing heart. We generated a left ventricular (LV) pressure overload model in C57BL/6NCrSlc mice by transverse aortic constriction (TAC) and examined the effects of empagliflozin (EMPA) in this model. We conducted metabolome and transcriptome analyses and histological and physiological examinations. EMPA administration ameliorated pressure overload-induced systolic dysfunction. Metabolomic studies showed that EMPA increased citrulline levels in cardiac tissue and reduced levels of arginine, indicating enhanced metabolism from arginine to citrulline and nitric oxide (NO). Transcriptome suggested possible involvement of the insulin/AKT pathway that could activate NO production through phosphorylation of endothelial NO synthase (eNOS). Histological examination of the mice showed capillary rarefaction and endothelial apoptosis after TAC, both of which were significantly improved by EMPA treatment. This improvement was associated with enhanced expression phospho-eNOS and NO production in cardiac endothelial cells. NOS inhibition attenuated these cardioprotective effects of EMPA. The in vitro studies showed that catecholamine-induced endothelial apoptosis was inhibited by NO, arginine, or AKT activator. EMPA activates the AKT/eNOS/NO pathway, which helps to suppress endothelial apoptosis, maintain capillarization and improve systolic dysfunction during LV pressure overload.

2007 ◽  
Vol 193 (3) ◽  
pp. 367-381 ◽  
Author(s):  
Anthony J Weinhaus ◽  
Laurence E Stout ◽  
Nicholas V Bhagroo ◽  
T Clark Brelje ◽  
Robert L Sorenson

Glucokinase activity is increased in pancreatic islets during pregnancy and in vitro by prolactin (PRL). The underlying mechanisms that lead to increased glucokinase have not been resolved. Since glucose itself regulates glucokinase activity in β-cells, it was unclear whether the lactogen effects are direct or occur through changes in glucose metabolism. To clarify the roles of glucose metabolism in this process, we examined the interactions between glucose and PRL on glucose metabolism, insulin secretion, and glucokinase expression in insulin 1 (INS-1) cells and rat islets. Although the PRL-induced changes were more pronounced after culture at higher glucose concentrations, an increase in glucose metabolism, insulin secretion, and glucokinase expression occurred even in the absence of glucose. The presence of comparable levels of insulin secretion at similar rates of glucose metabolism from both control and PRL-treated INS-1 cells suggests the PRL-induced increase in glucose metabolism is responsible for the increase in insulin secretion. Similarly, increases in other known PRL responsive genes (e.g. the PRL receptor, glucose transporter-2, and insulin) were also detected after culture without glucose. We show that the upstream glucokinase promoter contains multiple STAT5 binding sequences with increased binding in response to PRL. Corresponding increases in glucokinase mRNA and protein synthesis were also detected. This suggests the PRL-induced increase in glucokinase mRNA and its translation are sufficient to account for the elevated glucokinase activity in β-cells with lactogens. Importantly, the increase in islet glucokinase observed with PRL is in line with that observed in islets during pregnancy.


2020 ◽  
Vol 21 (12) ◽  
pp. 4406
Author(s):  
Adam P. Harvey ◽  
Emma Robinson ◽  
Kevin S. Edgar ◽  
Ross McMullan ◽  
Karla M. O’Neill ◽  
...  

Pressure overload-induced left ventricular hypertrophy (LVH) is initially adaptive but ultimately promotes systolic dysfunction and chronic heart failure. Whilst underlying pathways are incompletely understood, increased reactive oxygen species generation from Nox2 NADPH oxidases, and metabolic remodelling, largely driven by PPARα downregulation, are separately implicated. Here, we investigated interaction between the two as a key regulator of LVH using in vitro, in vivo and transcriptomic approaches. Phenylephrine-induced H9c2 cardiomyoblast hypertrophy was associated with reduced PPARα expression and increased Nox2 expression and activity. Pressure overload-induced LVH and systolic dysfunction induced in wild-type mice by transverse aortic constriction (TAC) for 7 days, in association with Nox2 upregulation and PPARα downregulation, was enhanced in PPARα−/− mice and prevented in Nox2−/− mice. Detailed transcriptomic analysis revealed significantly altered expression of genes relating to PPARα, oxidative stress and hypertrophy pathways in wild-type hearts, which were unaltered in Nox2−/− hearts, whilst oxidative stress pathways remained dysregulated in PPARα−/− hearts following TAC. Network analysis indicated that Nox2 was essential for PPARα downregulation in this setting and identified preferential inflammatory pathway modulation and candidate cytokines as upstream Nox2-sensitive regulators of PPARα signalling. Together, these data suggest that Nox2 is a critical driver of PPARα downregulation leading to maladaptive LVH.


2012 ◽  
Vol 111 (suppl_1) ◽  
Author(s):  
Andrea Iorga ◽  
Rangarajan Nadadur ◽  
Salil Sharma ◽  
Jingyuan Li ◽  
Mansoureh Eghbali

Heart failure is generally characterized by increased fibrosis and inflammation, which leads to functional and contractile defects. We have previously shown that short-term estrogen (E2) treatment can rescue pressure overload-induced decompensated heart failure (HF) in mice. Here, we investigate the anti-inflammatory and anti-fibrotic effects of E2 on reversing the adverse remodeling of the left ventricle which occurs during the progression to heart failure. Trans-aortic constriction procedure was used to induce HF. Once the ejection fraction reached ∼30%, one group of mice was sacrificed and the other group was treated with E2 (30 αg/kg/day) for 10 days. In vitro, co-cultured neonatal rat ventricular myocytes and fibroblasts were treated with Angiotensin II (AngII) to simulate cardiac stress, both in the presence or absence of E2. In vivo RT-PCR showed that the transcript levels of the pro-fibrotic markers Collagen I, TGFβ, Fibrosin 1 (FBRS) and Lysil Oxidase (LOX) were significantly upregulated in HF (from 1.00±0.16 to 1.83±0.11 for Collagen 1, 1±0.86 to 4.33±0.59 for TGFβ, 1±0.52 to 3.61±0.22 for FBRS and 1.00±0.33 to 2.88±0.32 for LOX) and were reduced with E2 treatment to levels similar to CTRL. E2 also restored in vitro AngII-induced upregulation of LOX, TGFβ and Collagen 1 (LOX:1±0.23 in CTRL, 6.87±0.26 in AngII and 2.80±1.5 in AngII+E2; TGFβ: 1±0.08 in CTRL, 3.30±0.25 in AngII and 1.59±0.21 in AngII+E2; Collagen 1: 1±0.05 in CTRL.2±0.01 in AngII and 0.65±0.02 (p<0.05, values normalized to CTRL)). Furthermore, the pro-inflammatory interleukins IL-1β and IL-6 were upregulated from 1±0.19 to 1.90±0.09 and 1±0.30 to 5.29±0.77 in the in vivo model of HF, respectively, and reversed to CTRL levels with E2 therapy. In vitro, IL-1β was also significantly increased ∼ 4 fold from 1±0.63 in CTRL to 3.86±0.14 with AngII treatment and restored to 1.29±0.77 with Ang+E2 treatment. Lastly, the anti-inflammatory interleukin IL-10 was downregulated from 1.00±0.17 to 0.49±0.03 in HF and reversed to 0.67±0.09 in vivo with E2 therapy (all values normalized to CTRL). This data strongly suggests that one of the mechanisms for the beneficial action of estrogen on left ventricular heart failure is through reversal of inflammation and fibrosis.


1994 ◽  
Vol 266 (1) ◽  
pp. H68-H78 ◽  
Author(s):  
C. R. Cory ◽  
R. W. Grange ◽  
M. E. Houston

The loss of load-sensitive relaxation observed in the pressure-overloaded heart may reflect a strategy of slowed cytosolic Ca2+ uptake to yield a prolongation of the active state of the muscle and a decrease in cellular energy expenditure. A decrease in the potential of the sarcoplasmic reticulum (SR) to resequester cytosolic Ca2+ during diastole could contribute to this attenuated load sensitivity. To test this hypothesis, both in vitro mechanical function of anterior papillary muscles and the SR Ca2+ sequestration potential of female guinea pig left ventricle were compared in cardiac hypertrophy (Hyp) and sham-operated (Sham) groups. Twenty-one days of pressure overload induced by coarctation of the suprarenal, subdiaphragmatic aorta resulted in a 36% increase in left ventricular mass in the Hyp. Peak isometric tension, the rate of isometric tension development, and the maximal rates of isometric and isotonic relaxation were significantly reduced in Hyp. Load-sensitive relaxation were significantly reduced in Hyp. Load-sensitive relaxation quantified by the ratio of a rapid loading to unloading force step in isotonically contracting papillary muscle was reduced 50% in Hyp muscles. Maximum activity of SR Ca(2+)-adenosinetriphosphatase (ATPase) measured under optimal conditions (37 degrees C; saturating Ca2+) was unaltered, but at low free Ca2+ concentrations (0.65 microM), it was decreased by 43% of the Sham response. Bivariate regression analysis revealed a significant (r = 0.84; P = 0.009) relationship between the decrease in SR Ca(2+)-ATPase activity and the loss of load-sensitive relaxation after aortic coarctation. Stimulation of the SR Ca(2+)-ATPase by the catalytic subunit of adenosine 3',5'-cyclic monophosphate-dependent protein kinase resulted in a 2.6-fold increase for Sham but only a 1.6-fold increase for Hyp. Semiquantitative Western blot radioimmunoassays revealed that the changes in SR Ca(2+)-ATPase activity were not due to decreases in the content of the Ca(2+)-ATPase protein or phospholamban. Our data directly implicate a role for decreased SR function in attenuated load sensitivity. A purposeful downregulation of SR Ca2+ uptake likely results from a qualitative rather than a quantitative change in the ATPase and possibly one of its key regulators, phospholamban.


2018 ◽  
Vol 132 (18) ◽  
pp. 2003-2012 ◽  
Author(s):  
Giulia Ferrannini ◽  
Lars Rydén

Cardiovascular (CV) disease (CVD) is the main cause of morbidity and mortality in patients with type 2 diabetes mellitus (T2DM). Despite optimal glycaemic control, standard antihyperglycaemic therapy failed to impact CV events in intervention trials; therefore, the U.S. Food and Drug Administration (FDA) and the European Medicines Agency (EMA) issued a guidance to the pharmaceutical industry to specifically assess the CV outcomes and safety of new glucose-lowering drugs. Amongst them, sodium-glucose transporter 2 (SGLT2) inhibitors proved to not only provide good tolerance, few adverse effects, and good glycometabolic control, but also striking reduction in the risk of CV events. In this review, data from the main randomised controlled trials are presented, including post-hoc analyses looking into several aspects of CV protection. Moreover, the main findings from observational real-world studies to date are described, overall reassuring as regards to CV safety and efficacy of SGLT2 inhibitors. Finally, several mechanisms which might contribute to the cardioprotective effect of SGLT2 inhibition are depicted, including findings from recent mechanistic studies.


Planta Medica ◽  
2020 ◽  
Vol 86 (17) ◽  
pp. 1304-1312
Author(s):  
Nurmila Sari ◽  
Yasufumi Katanasaka ◽  
Hiroki Honda ◽  
Yusuke Miyazaki ◽  
Yoichi Sunagawa ◽  
...  

AbstractPathological stresses such as pressure overload and myocardial infarction induce cardiac hypertrophy, which increases the risk of heart failure. Cacao bean polyphenols have recently gained considerable attention for their beneficial effects on cardiovascular diseases. This study investigated the effect of cacao bean polyphenols on the development of cardiac hypertrophy and heart failure. Cardiomyocytes from neonatal rats were pre-treated with cacao bean polyphenols and then stimulated with 30 µM phenylephrine. C57BL/6j male mice were subjected to sham or transverse aortic constriction surgery and then orally administered with vehicle or cacao bean polyphenols. Cardiac hypertrophy and function were examined by echocardiography. In cardiomyocytes, cacao bean polyphenols significantly suppressed phenylephrine-induced cardiomyocyte hypertrophy and hypertrophic gene transcription. Extracellular signal-regulated kinase 1/2 and GATA binding protein 4 phosphorylation induced by phenylephrine was inhibited by cacao bean polyphenols treatment in the cardiomyocytes. Cacao bean polyphenols treatment at 1200 mg/kg significantly ameliorated left ventricular posterior wall thickness, fractional shortening, hypertrophic gene transcription, cardiac hypertrophy, cardiac fibrosis, and extracellular signal-regulated kinase 1/2 phosphorylation induced by pressure overload. In conclusion, these findings suggest that cacao bean polyphenols prevent pressure overload-induced cardiac hypertrophy and systolic dysfunction by inhibiting the extracellular signal-regulated kinase 1/2-GATA binding protein 4 pathway in cardiomyocytes. Thus, cacao bean polyphenols may be useful for heart failure therapy in humans.


2018 ◽  
Vol 125 (1) ◽  
pp. 86-96 ◽  
Author(s):  
T. Dylan Olver ◽  
Jenna C. Edwards ◽  
Brian S. Ferguson ◽  
Jessica A. Hiemstra ◽  
Pamela K. Thorne ◽  
...  

Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Thus, the purpose of this study was to determine the therapeutic efficacy of chronic interval exercise training (IT) on large-conductance Ca2+-activated K+ (BKCa) channel-mediated coronary vascular function in heart failure. We hypothesized that chronic interval exercise training would attenuate pressure overload-induced impairments to coronary BKCa channel-mediated function. A translational large-animal model with cardiac features of HFpEF was used to test this hypothesis. Specifically, male Yucatan miniswine were divided into three groups ( n = 7/group): control (CON), aortic banded (AB)-heart failure (HF), and AB-interval trained (HF-IT). Coronary blood flow, vascular conductance, and vasodilatory capacity were measured after administration of the BKCa channel agonist NS-1619 both in vivo and in vitro in the left anterior descending coronary artery and isolated coronary arterioles, respectively. Skeletal muscle citrate synthase activity was decreased and left ventricular brain natriuretic peptide levels increased in HF vs. CON and HF-IT animals. A parallel decrease in NS-1619-dependent coronary vasodilatory reserve in vivo and isolated coronary arteriole vasodilatory responsiveness in vitro were observed in HF animals compared with CON, which was prevented in the HF-IT group. Although exercise training prevented BKCa channel-mediated coronary vascular dysfunction, it did not change BKCa channel α-subunit mRNA, protein, or cellular location (i.e., membrane vs. cytoplasm). In conclusion, these results demonstrate the viability of chronic interval exercise training as a therapy for central and peripheral adaptations of experimental heart failure, including BKCa channel-mediated coronary vascular dysfunction. NEW & NOTEWORTHY Conventional treatments have failed to improve the prognosis of heart failure with preserved ejection fraction (HFpEF) patients. Our findings show that chronic interval exercise training can prevent BKCa channel-mediated coronary vascular dysfunction in a translational swine model of chronic pressure overload-induced heart failure with relevance to human HFpEF.


1997 ◽  
Vol 273 (3) ◽  
pp. H1317-H1323 ◽  
Author(s):  
J. J. Lopez ◽  
R. J. Laham ◽  
J. P. Carrozza ◽  
M. Tofukuji ◽  
F. W. Sellke ◽  
...  

Vascular endothelial growth factor (VEGF) has been utilized to improve blood flow in the setting of myocardial or peripheral vascular ischemia. In this investigation we studied the hemodynamic effects of intracoronary VEGF administration. Hemodynamic parameters and Doppler flow wire recordings from the left anterior descending coronary artery were measured after intracoronary infusion of VEGF (1, 10, and 100 micrograms) in 28 intubated pigs. Additional studies were performed using an in vitro isolated microvessel preparation. VEGF produced a highly significant dose-dependent increase in coronary blood flow (maximal 3.51 +/- 0.85-fold) in the absence of significant changes in epicardial artery diameter, a decline in mean arterial pressure (maximal 43%), and a decrease in left ventricular end-diastolic pressure (maximal 52%), all of which could be inhibited by pretreatment with NG-nitro-L-arginine. The increase in coronary flow seen with 10 or 100 micrograms VEGF was significantly greater than the maximal vasodilation achieved with serotonin or nitroglycerin and was equivalent to a maximal adenosine response. In summary, VEGF stimulates nitric oxide (NO)-dependent dilation of coronary microvessels, and repeat administrations of VEGF resulted in rapid development of tachyphylaxis to VEGF as well as serotonin, but not to nitroglycerin or adenosine, which appeared to be secondary to impaired NO production.


Circulation ◽  
2020 ◽  
Vol 141 (3) ◽  
pp. 199-216 ◽  
Author(s):  
Fiona Bartoli ◽  
Marc A. Bailey ◽  
Baptiste Rode ◽  
Philippe Mateo ◽  
Fabrice Antigny ◽  
...  

Background: Orai1 is a critical ion channel subunit, best recognized as a mediator of store-operated Ca 2+ entry (SOCE) in nonexcitable cells. SOCE has recently emerged as a key contributor of cardiac hypertrophy and heart failure but the relevance of Orai1 is still unclear. Methods: To test the role of these Orai1 channels in the cardiac pathophysiology, a transgenic mouse was generated with cardiomyocyte-specific expression of an ion pore-disruptive Orai1 R91W mutant (C-dnO1). Synthetic chemistry and channel screening strategies were used to develop 4-(2,5-dimethoxyphenyl)-N-[(pyridin-4-yl)methyl]aniline (hereafter referred to as JPIII), a small-molecule Orai1 channel inhibitor suitable for in vivo delivery. Results: Adult mice subjected to transverse aortic constriction (TAC) developed cardiac hypertrophy and reduced ventricular function associated with increased Orai1 expression and Orai1-dependent SOCE (assessed by Mn 2+ influx). C-dnO1 mice displayed normal cardiac electromechanical function and cellular excitation-contraction coupling despite reduced Orai1-dependent SOCE. Five weeks after TAC, C-dnO1 mice were protected from systolic dysfunction (assessed by preserved left ventricular fractional shortening and ejection fraction) even if increased cardiac mass and prohypertrophic markers induction were observed. This is correlated with a protection from TAC-induced cellular Ca 2+ signaling alterations (increased SOCE, decreased [Ca 2+ ] i transients amplitude and decay rate, lower SR Ca 2+ load and depressed cellular contractility) and SERCA2a downregulation in ventricular cardiomyocytes from C-dnO1 mice, associated with blunted Pyk2 signaling. There was also less fibrosis in heart sections from C-dnO1 mice after TAC. Moreover, 3 weeks treatment with JPIII following 5 weeks of TAC confirmed the translational relevance of an Orai1 inhibition strategy during hypertrophic insult. Conclusions: The findings suggest a key role of cardiac Orai1 channels and the potential for Orai1 channel inhibitors as inotropic therapies for maintaining contractility reserve after hypertrophic stress.


Sign in / Sign up

Export Citation Format

Share Document