scholarly journals 2D- and 3D-cultures of human trabecular meshwork cells: A preliminary assessment of an in vitro model for glaucoma study

PLoS ONE ◽  
2019 ◽  
Vol 14 (9) ◽  
pp. e0221942 ◽  
Author(s):  
Stefania Vernazza ◽  
Sara Tirendi ◽  
Sonia Scarfì ◽  
Mario Passalacqua ◽  
Francesco Oddone ◽  
...  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Megumi Watanabe ◽  
Yosuke Ida ◽  
Hiroshi Ohguro ◽  
Chiaki Ota ◽  
Fumihito Hikage

AbstractTo establish appropriate ex vivo models for a glaucomatous trabecular meshwork (TM), two-dimensional (2D) and three-dimensional (3D) cultures of human trabecular meshwork cells (HTM) were prepared in the presence of 250 nM dexamethasone (DEX) or 5 ng/mL TGFβ2, and characterized by the following analyses; transendothelial electrical resistance (TEER) measurements, FITC dextran permeability, scanning electron microscopy and the expression of the extracellular matrix (ECM) including collagen (COL)1, 4 and 6, and fibronectin (FN), α-smooth muscle actin (α-SMA), tissue inhibitor of metalloproteinase (TIMP)1–4, and matrix metalloproteinase (MMP)2, 9 and 14. DEX and TGFβ2 both caused a significant increase or decrease in the TEER values and FITC dextran permeability. During the 3D spheroid culture, DEX or TGFβ2 induced a mild and significant down-sizing and an increase in stiffness, respectively. TGFβ2 induced a significant up-regulation of COL1 and 4, FN, α-SMA, and MMP 2 and 14 (2D) or COL1 and 6, and TIMP2 and 3 (3D), and DEX induced a significant up-regulation of FN (3D) and TIMP4 (2D and 3D). The findings presented herein indicate that DEX or TGFβ2 resulted in mild and severe down-sized and stiff 3D HTM spheroids, respectively, thus making them viable in vitro HTM models for steroid-induced and primary open angle glaucoma.


Blood ◽  
2012 ◽  
Vol 120 (21) ◽  
pp. 1837-1837
Author(s):  
Michaela R Reagan ◽  
Aldo M Roccaro ◽  
AbdelKareem Azab ◽  
Yong Zhang ◽  
Grace B O'Callaghan ◽  
...  

Abstract Abstract 1837 Introduction: Current research has demonstrated that cancer cells are not only influenced by their microenvironment, but are also able to drastically alter their surroundings to further accelerate cancer progression. Hematological malignancies create a forward feedback system with local mesenchymal stromal cells within the bone marrow, but the exact mechanisms and cellular changes within the stroma are largely unknown. Our work has aimed at understanding the bidirectional interaction between multiple myeloma (MM) cells and human bone marrow-derived mesenchymal stromal cells (hMSCs) by characterizing hMSCs derived from either MM patients or healthy individuals, using medium-throughput assays and 2D and 3D in vitro bone marrow models. Methods: First, primary human myeloma patient MSCs (MM-MSCs) and normal donor MSCs (ND-MSCs) were characterized in terms of proliferation when cultured with and without MM.1S cancer cells in direct and indirect co-culture. Next, primary ND- and MM-MSCs were profiled for their microRNA (miRNA) (n=3 for normal, n=7 for MM) and mRNA (n=5 for normal, n=5 for MM) expression using Nanostring technologies. We analyzed 800 human miRNAs from miRBase v.18 and 230 human cancer-related genes using the nCounter® Human Cancer Reference Kit, which allowed for much greater specificity and reliability than microarray technologies. Lastly, a more representative culture system was designed to better mimic myeloma growth within the bone marrow. We developed a 3D in vitro model using hMSCS and fluorescent, luciferase-labeled MM cell lines seeded into porous, autofluorescent silk scaffolds. Scaffolds were made using silk fibroin protein isolated from silkworm cocoons and were formed into biocompatible cylinders with pores of 500–600 microns in diameter. Both ND- and MM-MSCs were labeled with fluorescent cell-tracker dyes and cultured on scaffolds with or without MM1S-GFP+/Luc+ cells. These were non-destructively assessed using confocal microscopy and bioluminescent imaging (BLI) for their ability to promote cancer cell growth and protect cancer cells from chemotherapeutics. Comparison with a conventional 2D in vitro model was performed. Scaffolds were also assessed for their ability to support in vitro culture of primary MM cells using confocal microscopy. Results: MM-MSCs differed from ND-MSCs at miRNA, mRNA, and functional levels. MM-MSCs proliferated slower than ND-MSCs and direct, but not indirect, co-culture of ND-MSCs with MM.1S was able to recapitulate this slowed proliferation in vitro. Indeed, we found that 22 microRNAs were significantly dis-regulated (14 up-regulated and 8 down-regulated in MM patients versus healthy individuals). These included up-regulation of miRNA-222, -181, -146, and -382; together with down-regulation of miRNA-15a, -143, and -199a, in MM-derived hMSCs, compared to ND-MSCs (p<0.05). Moreover, gene expression profiling showed higher expression of CDKN1A, CDKN2A, STAT1, FOSL2, and BCL6 mRNAs, in MM- versus ND- MSCs (fold changes of 3.94, 2.3207, 2.3207, 1.735 and 1.933 respectively, all p<0.05 value). MM1S-GFP+/Luc+ cells were seeded onto scaffolds in presence of either normal- or MM-derived MSCs, in the presence or absence of bortezomib (5nM), and cultured for up to 1 month. Importantly, the 3D model demonstrated stromal-induced protection of MM1S, thus allowing for a more realistic culture system. MM1S cells were protected from bortezomib-induced death by stroma in both 2D and 3D culture over a short time period (48 hours), but, after a 2 week period, this protection was only found in 3D, compared to the 2D model, where no MM1S remained (with or without stroma). Stroma-seeded scaffolds also showed evidence of enhancing culture longevity of primary patient MM cells. Conclusion: MiRNA, mRNA, and functional differences between ND- and MM- MSCs demonstrate changes induced in local stroma in response to MM cells that may encourage tumor growth and require further investigation. The different growth patterns and drug responses of MM.1S to therapies in 2D vs 3D culture suggests that a 3D co-culture environment may represent a more realistic model of drug resistance and minimal residual disease than 2D or monoculture models. Both MM and ND- MSCs were able to induce protection of MM.1S cells in the 3D environment; the mechanisms behind this protection need to be characterized to increase efficacy of current therapeutics within the bone marrow. Disclosures: Ghobrial: Millennium: Advisory Board Other; Novartis: Advisory Board, Advisory Board Other.


Cells ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3448
Author(s):  
Munmun Chakraborty ◽  
Prity Sahay ◽  
Aparna Rao

The lack of an animal model or an in vitro model limits experimental options for studying temporal molecular events in pseudoexfoliation syndrome (PXF), an age related fibrillopathy causing trabecular meshwork damage and glaucoma. Our goal was to create a workable in vitro model of PXF using primary human TM (HTM) cell lines simulating human disease. Primary HTM cells harvested from healthy donors (n = 3), were exposed to various concentrations (5 ng/mL, 10 ng/mL, 15 ng/mL) of transforming growth factor-beta1 (TGF-β1) for different time points. Morphological change of epithelial–mesenchymal transition (EMT) was analyzed by direct microscopic visualization and immunoblotting for EMT markers. Expression of pro-fibrotic markers were analyzed by quantitative RT-PCR and immunoblotting. Cell viability and death in treated cells was analyzed using FACS and MTT assay. Protein complex and amyloid aggregate formation was analyzed by Immunofluorescence of oligomer11 and amyloid beta fibrils. Effect of these changes with pharmacological inhibitors of canonical and non-canonical TGF pathway was done to analyze the pathway involved. The expression of pro-fibrotic markers was markedly upregulated at 10 ng/mL of TGF-β1 exposure at 48–72 h of exposure with associated EMT changes at the same time point. Protein aggregates were seen maximally at these time points that were found to be localized around the nucleus and in the extracellular matrix (ECM). EMT and pro-fibrotic expression was differentially regulated by different canonical and non-canonical pathways suggesting complex regulatory mechanisms. This in vitro model using HTM cells simulated the main characteristics of human disease in PXF like pro-fibrotic gene expression, EMT, and aggregate formation.


Author(s):  
Hoda Keshmiri Neghab ◽  
Mohammad Hasan Soheilifar ◽  
Gholamreza Esmaeeli Djavid

Abstract. Wound healing consists of a series of highly orderly overlapping processes characterized by hemostasis, inflammation, proliferation, and remodeling. Prolongation or interruption in each phase can lead to delayed wound healing or a non-healing chronic wound. Vitamin A is a crucial nutrient that is most beneficial for the health of the skin. The present study was undertaken to determine the effect of vitamin A on regeneration, angiogenesis, and inflammation characteristics in an in vitro model system during wound healing. For this purpose, mouse skin normal fibroblast (L929), human umbilical vein endothelial cell (HUVEC), and monocyte/macrophage-like cell line (RAW 264.7) were considered to evaluate proliferation, angiogenesis, and anti-inflammatory responses, respectively. Vitamin A (0.1–5 μM) increased cellular proliferation of L929 and HUVEC (p < 0.05). Similarly, it stimulated angiogenesis by promoting endothelial cell migration up to approximately 4 fold and interestingly tube formation up to 8.5 fold (p < 0.01). Furthermore, vitamin A treatment was shown to decrease the level of nitric oxide production in a dose-dependent effect (p < 0.05), exhibiting the anti-inflammatory property of vitamin A in accelerating wound healing. These results may reveal the therapeutic potential of vitamin A in diabetic wound healing by stimulating regeneration, angiogenesis, and anti-inflammation responses.


2011 ◽  
Vol 71 (05) ◽  
Author(s):  
M Salama ◽  
K Winkler ◽  
KF Murach ◽  
S Hofer ◽  
L Wildt ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document