scholarly journals Resonant scanning design and control for fast spatial sampling

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Zhanghao Sun ◽  
Ronald Quan ◽  
Olav Solgaard

AbstractTwo-dimensional, resonant scanners have been utilized in a large variety of imaging modules due to their compact form, low power consumption, large angular range, and high speed. However, resonant scanners have problems with non-optimal and inflexible scanning patterns and inherent phase uncertainty, which limit practical applications. Here we propose methods for optimized design and control of the scanning trajectory of two-dimensional resonant scanners under various physical constraints, including high frame-rate and limited actuation amplitude. First, we propose an analytical design rule for uniform spatial sampling. We demonstrate theoretically and experimentally that by expanding the design space, the proposed designs outperform previous designs in terms of scanning range and fill factor. Second, we show that we can create flexible scanning patterns that allow focusing on user-defined Regions-of-Interest (RoI) by modulation of the scanning parameters. The scanning parameters are found by an optimization algorithm. In simulations, we demonstrate the benefits of these designs with standard metrics and higher-level computer vision tasks (LiDAR odometry and 3D object detection). Finally, we experimentally implement and verify both unmodulated and modulated scanning modes using a two-dimensional, resonant MEMS scanner. Central to the implementations is high bandwidth monitoring of the phase of the angular scans in both dimensions. This task is carried out with a position-sensitive photodetector combined with high-bandwidth electronics, enabling fast spatial sampling at $$\sim 100$$ ∼ 100 Hz frame-rate.

Author(s):  
Hsin-Lin Ho ◽  
Jun-Da Chen ◽  
Ching-An Yang ◽  
Chia-Chi Liu ◽  
Cheng-Ting Lee ◽  
...  

AbstractWe characterize a new chaos lidar system configuration and demonstrate its capability for high-speed 3D imaging. Compared with a homodyned scheme employing single-element avalanche photodetectors (APDs), the proposed scheme utilizes a fiber Bragg grating and quadrant APDs to substantially increase the system throughput, frame rate, and field-of-view. By quantitatively analyzing the signal-to-noise ratio, peak-to-standard deviation of the sidelobe level, precision, and detection probability, we show that the proposed scheme has better detection performance suitable for practical applications. To show the feasibility of the chaos lidar system, while under the constrain of eye-safe regulation, we demonstrate high-speed 3D imaging with indoor and outdoor scenes at a throughput of 100 kHz, a frame rate of 10 Hz, and a FOV of 24.5$$^\circ $$ ∘ $$\times $$ × 11.5$$^\circ $$ ∘ for the first time.


1999 ◽  
Vol 121 (1) ◽  
pp. 58-63 ◽  
Author(s):  
Daehie Hong ◽  
Steven A. Velinsky ◽  
Xin Feng

For low speed, low acceleration, and lightly loaded applications, kinematic models of Wheeled Mobile Robots (WMRs) provide reasonably accurate results. However, as WMRs are designed to perform more demanding, practical applications with high speeds and/or high loads, kinematic models are no longer valid representations. This paper includes experimental results for a heavy, differentially steered WMR for both loaded and unloaded conditions. These results are used to verify a recently developed dynamic model which includes a complex tire representation to accurately account for the tire/ground interaction. The dynamic model is then exercised to clearly show the inadequacy of kinematic models for high load and/or high speed conditions. Furthermore, through simulation, the failure of kinematic model based control for such applications is also shown.


2012 ◽  
Vol 622-623 ◽  
pp. 259-262 ◽  
Author(s):  
M.R. Banwaskar ◽  
S.N. Dachawar

Graphene is a form of carbon just one atom thick, it has an array of physical properties that promise to revolutionize electronics and other technical fields. Since the first reports of its discovery in 2004, work on graphene has largely stressed understanding the fundamentals of the two-dimensional material over pursuing applications for it. Graphene may become a key enabling material, paving the way for a new generation of high-speed nanoscale electronics with consequences and breakthroughs similar to that of silicon’s in the last few decades. In this paper we present the evolution of this fascinating material, beginning with early observations and moving into the practical applications.


2018 ◽  
Vol 24 (8) ◽  
pp. 5989-5993 ◽  
Author(s):  
T. Narendra Reddy ◽  
S. N Vithun ◽  
Prakash Vinod ◽  
Shrikantha S Rao ◽  
Mervin Herbert

Micro and Nanopositioning systems are widely used in semiconductor, optics, materials science, photonics packaging, optical focusing objectives etc. This paper is focused on development of high bandwidth flexure based stage for nanopositioning requirements. The speed, nano-metric motions and positioning accuracy are limited based on the structural vibrations of the flexure based nanopositioning, non-linear characteristics of the piezo-actuators and control system performance. The research work carried out includes design of complaint mechanisms, fabrication of flexure stages and implementation of closed loop systems to achieve high bandwidth positioning applications. The developed high speed and high bandwidth nanopositioning system are tested for accuracy, linearity and cross talk motions for Nanopositioning applications.


2001 ◽  
Author(s):  
Jia Guangzheng ◽  
Wang Xuanyin

Abstract The reciprocating pumps are widely used for transporting fluid in oil field. The flow pulsation and pressure fluctuation in the conventional reciprocating pump with short stroke, high speed and simple harmonic motion of piston driven by crank-connecting rod mechanism are inevitable. For reducing the flow and pressure pulsation, a hydraulic reciprocating pump with the GPCM control by means of normal on-off valve is designed. In order to improve the overall pump performances and life span. fault analysis and optimized design of the pump valve are completed. The mathematical model of the asymmetric cylinder system with PCM valve control used in the hydraulic reciprocating pump is built. The digital simulation about the control system is done, and the result shows that the pulsation of pump discharge flow is improved greatly.


2019 ◽  
Vol 455 ◽  
pp. 161-187
Author(s):  
Alexandre Kongne Mando ◽  
David Yemélé ◽  
Wilfried Takam Sokamte ◽  
Anaclet Fomethe

Author(s):  
Yudong Bao ◽  
Linkai Wu ◽  
Yanling Zhao ◽  
Chengyi Pan

Background:: Angular contact ball bearings are the most popular bearing type used in the high speed spindle for machining centers, The performance of the bearing directly affects the machining efficiency of the machine tool, Obtaining a higher value is the direction of its research and development. Objective:: By analyzing the research achievements and patents of electric spindle angular contact bearings, summarizing the development trend provides a reference for the development of electric spindle bearings. Methods:: Through the analysis of the relevant technology of the electric spindle angular contact ball bearing, the advantages and disadvantages of the angular contact ball bearing are introduced, and the research results are combined with the patent analysis. Results:: With the rapid development of high-speed cutting and numerical control technology and the needs of practical applications, the spindle requires higher and higher speeds for bearings. In order to meet the requirements of use, it is necessary to improve the bearing performance by optimizing the structure size and improving the lubrication conditions. Meanwhile, reasonable processing and assembly methods will also have a beneficial effect on bearing performance. Conclusion:: With the continuous deepening of bearing technology research and the use of new structures and ceramic materials has made the bearing's limit speed repeatedly reach new highs. The future development trend of high-speed bearings for electric spindles is environmental protection, intelligence, high speed, high precision and long life.


Author(s):  
Xintian Liu ◽  
Yang Qu ◽  
Xiaobing Yang ◽  
Yongfeng Shen

Background:: In the process of high-speed driving, the wheel hub is constantly subjected to the impact load from the ground. Therefore, it is important to estimate the fatigue life of the hub in the design and production process. Objective:: This paper introduces a method to study the fatigue life of car hub based on the road load collected from test site. Methods:: Based on interval analysis, the distribution characteristics of load spectrum are analyzed. The fatigue life estimation of one - dimensional and two - dimensional load spectra is compared by compiling load spectra. Results:: According to the S-N curve cluster and the one-dimensional program load spectrum, the estimated range fatigue life of the hub is 397,100 km to 529,700 km. For unsymmetrical cyclic loading, each level means and amplitude of load were obtained through the Goodman fatigue empirical formula, and then according to S-N curve clusters in the upper and lower curves and two-dimensional program load spectrum, estimates the fatigue life of wheel hub of the interval is 329900 km to 435200 km, than one-dimensional load spectrum fatigue life was reduced by 16.9% - 17.8%. Conclusion:: This paper lays a foundation for the prediction of fatigue life and the bench test of fatigue durability of auto parts subjected to complex and variable random loads. At the same time, the research method can also be used to estimate the fatigue life of other bearing parts or high-speed moving parts and assemblies.


Sign in / Sign up

Export Citation Format

Share Document