scholarly journals Global-scale interdecadal variability a skillful predictor at decadal-to-multidecadal timescales for Sahelian and Indian Monsoon Rainfall

2022 ◽  
Vol 5 (1) ◽  
Author(s):  
Manish K. Joshi ◽  
Archana Rai ◽  
Ashwini Kulkarni

AbstractIn the present study, a sea surface temperature-based index named global-scale interdecadal variability (GIV) encompassing the combined variability of Atlantic multidecadal oscillation (AMO) and interdecadal Pacific oscillation (IPO) has been proposed. The warm phase of GIV exhibits a “cold AMO-like” pattern in the Atlantic basin and a “warm IPO-like” pattern in the Pacific basin. About 84% (R ~−0.914) of Sahelian and 42% (R ~−0.647) of Indian rainfall’s temporal variance is attributed to GIV, showing substantial improvement compared to the variance explained by AMO and IPO individually. The physical mechanism for GIV-rainfall teleconnection is related to a modification of the Walker circulation. Although there is a substantial degree of uncertainty in the current generation of state-of-the-art climate models from the Coupled Model Intercomparison Project Phase 5 (CMIP5), some still replicate the observed GIV’s spatial structure, its teleconnection, and associated physical mechanism. The results presented herein advance our knowledge about rainfall’s interdecadal variability and have imperative ramifications for developing skillful decadal predictions.

2012 ◽  
Vol 25 (19) ◽  
pp. 6756-6769 ◽  
Author(s):  
Haiyan Teng ◽  
Grant Branstator

Abstract A prominent pattern of variability of the Northern Hemisphere wintertime tropospheric planetary waves, referred to here as the Wave3 pattern, is identified from the NCEP–NCAR reanalysis. It is worthy of attention because its structure is similar to the linear trend pattern as well as the leading pattern of multidecadal variability of the planetary waves during the past half century. The Wave3 pattern is defined as the second empirical orthogonal function (EOF) of detrended December–February mean 300-hPa meridional wind V300 and denotes a zonal shift of the ridges and troughs of the climatological flow. Although its interannual variance is roughly comparable to that of EOF1 of V300, which represents the Pacific–North America (PNA) pattern, its multidecadal variance is nearly twice as large as that of the PNA. Wave3 is not completely structurally or temporally distinct from the northern annular mode (NAM) but, for some attributes, the linkage of the observed trend to Wave3 is clearer than to NAM. The prominence of the Wave3 pattern is further supported by attributes of many climate models that participated in phase 3 of the Coupled Model Intercomparison Project (CMIP3). In particular, in the Community Climate System Model, version 3 (CCSM3), the Wave3 pattern is present as EOF3 of V300 in both a fully coupled integration and a stand-alone atmospheric integration forced by climatological sea surface temperatures. Its existence in the latter experiment indicates that the pattern can be produced by atmospheric processes alone.


2017 ◽  
Vol 30 (8) ◽  
pp. 2785-2810 ◽  
Author(s):  
Yohan Ruprich-Robert ◽  
Rym Msadek ◽  
Frederic Castruccio ◽  
Stephen Yeager ◽  
Tom Delworth ◽  
...  

The climate impacts of the observed Atlantic multidecadal variability (AMV) are investigated using the GFDL CM2.1 and the NCAR CESM1 coupled climate models. The model North Atlantic sea surface temperatures are restored to fixed anomalies corresponding to an estimate of the internally driven component of the observed AMV. Both models show that during boreal summer the AMV alters the Walker circulation and generates precipitation anomalies over the whole tropical belt. A warm phase of the AMV yields reduced precipitation over the western United States, drier conditions over the Mediterranean basin, and wetter conditions over northern Europe. During boreal winter, the AMV modulates by a factor of about 2 the frequency of occurrence of El Niño and La Niña events. This response is associated with anomalies over the Pacific that project onto the interdecadal Pacific oscillation pattern (i.e., Pacific decadal oscillation–like anomalies in the Northern Hemisphere and a symmetrical pattern in the Southern Hemisphere). This winter response is a lagged adjustment of the Pacific Ocean to the AMV forcing in summer. Most of the simulated global-scale impacts are driven by the tropical part of the AMV, except for the winter North Atlantic Oscillation–like response over the North Atlantic–European region, which is driven by both the subpolar and tropical parts of the AMV. The teleconnections between the Pacific and Atlantic basins alter the direct North Atlantic local response to the AMV, which highlights the importance of using a global coupled framework to investigate the climate impacts of the AMV. The similarity of the two model responses gives confidence that impacts described in this paper are robust.


2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Xichen Li ◽  
Xinyue Wang ◽  
Tao Lian ◽  
Nathaniel C. Johnson ◽  
Jiang Zhu ◽  
...  

AbstractDuring the modern satellite era since 1979, the Pacific Walker circulation (PWC) experienced an intensification and a westward shift, which has broad impacts on the global climate variability. While the strengthening of the PWC has been shown to be driven by both the regional Pacific sea surface temperature (SST) and the remote forcing from other basins, its westward shift is primarily attributed to the phase change of the Atlantic Multidecadal variability. In this study, we investigate the potential effect of the remote SST forcing from the Atlantic and the Indian Oceans on the westward shift of the PWC, through statistical analysis and numerical experiments using atmospheric and coupled models. Results show that the tropical Atlantic warming plays a key (decisive) role in driving the PWC westward shift by triggering a Gill–Matsuno-type circulation anomaly in the tropics. This circulation response drives anomalous surface westerlies over the eastern Pacific and subsidence over the central Pacific that weakens the eastern part of the PWC, meanwhile generating easterly wind anomalies over the central-western Pacific and anomalous atmospheric convection over the western Pacific that intensifies the western part of the PWC. This direct forcing contributes ~ 32% of the observed PWC movement, while the Atlantic-induced inter-basin SST changes contribute another ~ 36% of its westward shift according to coupled model simulation results. Our results reinforce the importance of the inter-basin interactions in adjusting the tropical climate variabilities, and have broad implication for projecting the global climate.


2016 ◽  
Vol 29 (8) ◽  
pp. 2765-2779 ◽  
Author(s):  
Byung-Ju Sohn ◽  
Sukyoung Lee ◽  
Eui-Seok Chung ◽  
Hwan-Jin Song

Abstract There is an uncertainty in how the Pacific Walker circulation (PWC) will change in response to increased greenhouse gas (GHG) warming. On average, climate models predict that the PWC will weaken. Observational evidence is mixed, with some evidence supporting the models while others do not. In this study, insight into the PWC trend is provided by examining the tropical dry static stability, a quantity that is inversely proportional to the strength of the PWC. For the 1979–2012 period, the static stability increased markedly in all phase 5 of the Coupled Model Intercomparison Project (CMIP5) models, far more so than in the satellite and global reanalysis data, which show a strengthening of the PWC. The stabilization is greater for a subset of models that simulate a significant weakening of the PWC. With the observed sea surface temperature as the lower boundary condition, over the western tropical Pacific, atmospheric models that belong to the weakening-PWC-CMIP5 group produce greater stabilization than those that belong to the strengthening-PWC-CMIP5 group. Compared with the latter group, the former group of atmospheric models simulates weaker trade winds over the western and central tropical Pacific and, consistent with the Bjerknes mechanism, the corresponding CMIP5 models produce a weaker west–east gradient in tropical SST. Given that the models’ convective parameterizations overstabilize the atmosphere compared with an explicit convection, the findings here suggest that the models’ representations of tropical convection and stability contribute to the models’ tendency to simulate a weakening of the PWC and an El Niño–like SST.


2013 ◽  
Vol 26 (12) ◽  
pp. 4038-4048 ◽  
Author(s):  
Pedro N. DiNezio ◽  
Gabriel A. Vecchi ◽  
Amy C. Clement

Abstract Changes in the gradients in sea level pressure (SLP) and sea surface temperature (SST) along the equatorial Pacific are analyzed in observations and 101 numerical experiments performed with 37 climate models participating in the fifth phase of the Coupled Model Intercomparison Project (CMIP5). The ensemble of numerical experiments simulates changes in the earth’s climate during the 1870–2004 period in response to changes in natural (solar variations and volcanoes) and anthropogenic (well-mixed greenhouse gases, ozone, direct aerosol forcing, and land use) radiative forcings. A reduction in the zonal SLP gradient is present in observational records and is the typical response of the ensemble, yet only 26 out of the 101 experiments exhibit a reduced SLP gradient within 95% statistical confidence of the observed value. The multimodel response indicates a reduction of the Walker circulation to historical forcings, albeit an order of magnitude smaller than the observed value. There are multiple nonexclusive interpretations of these results: (i) the observed trend may not be entirely forced and includes a substantial component from internal variability; (ii) there are problems with the observational record that lead to a spuriously large trend; and (iii) the strength of the Walker circulation, as measured by the zonal SLP gradient, may be less sensitive to external forcing in models than in the real climate system. Analysis of a subset of experiments suggests that greenhouse gases act to weaken the circulation, but aerosol forcing drives a strengthening of the circulation, which appears to be overestimated by the models, resulting in a muted response to the combined anthropogenic forcings.


2010 ◽  
Vol 23 (2) ◽  
pp. 378-389 ◽  
Author(s):  
Rong Zhang ◽  
Sarah M. Kang ◽  
Isaac M. Held

Abstract A variety of observational and modeling studies show that changes in the Atlantic meridional overturning circulation (AMOC) can induce rapid global-scale climate change. In particular, a substantially weakened AMOC leads to a southward shift of the intertropical convergence zone (ITCZ) in both the Atlantic and the Pacific Oceans. However, the simulated amplitudes of the AMOC-induced tropical climate change differ substantially among different models. In this paper, the sensitivity to cloud feedback of the climate response to a change in the AMOC is studied using a coupled ocean–atmosphere model [the GFDL Coupled Model, version 2.1 (CM2.1)]. Without cloud feedback, the simulated AMOC-induced climate change in this model is weakened substantially. Low-cloud feedback has a strong amplifying impact on the tropical ITCZ shift in this model, whereas the effects of high-cloud feedback are weaker. It is concluded that cloud feedback is an important contributor to the uncertainty in the global response to AMOC changes.


Author(s):  
Ije Hur ◽  
Minju Kim ◽  
Kyungmin Kwak ◽  
Hyun Min Sung ◽  
Young-Hwa Byun ◽  
...  

AbstractHadley circulation (HC) is a planetary-scale overturning circulation in the tropics that transports momentum, heat, and moisture poleward. In this study, we evaluate the strength and extent of the HC in the historical and future climate simulations of the Korean Meteorological Administration (KMA) Advanced Community Earth system model (K-ACE), which was recently developed by the National Institute of Meteorological Sciences of Korea. Compared with a reanalysis product, the overall structure of the HC is reasonably reproduced by the K-ACE. At the same time, it is also found that the Northern Hemisphere HC in the K-ACE is shifted southward by a few degrees, while the strength of the Southern Hemisphere (SH) HC is under-represented by approximately 20%. These biases in the strength and extent of the HC can be explained by biases in the eddy momentum flux and precipitation in the tropics. In the future climate simulations under the Shared Socioeconomic Pathway 5-Representative Concentration Pathway 8.5 scenario, the HCs in the K-ACE show a weakening and widening trend in both hemispheres, which is consistent with the projections of many Coupled Model Intercomparison Project Phase 6 models. A notable feature of the K-ACE is the widening of the SH HC, which takes place at a rate that is about double the multi-model mean. Climate models that share the component models with the K-ACE, such as UKESM, HadGEM3-GC31-LL, and ACCESS-CM2/ESM1, also show enhanced poleward expansion of the HC in the SH. This strong expansion is shown to be dominated by the expansion of the regional HC over the Pacific.


2021 ◽  
Author(s):  
Qing Yan

<p>Fluctuations in the Pacific Walker circulation (PWC), a zonally-oriented overturning cell across the tropical Pacific, can cause widespread climatic and biogeochemical perturbations. It remains unknown how the PWC developed during the Cenozoic era, with its substantial changes in greenhouse gases and continental positions. Through a suite of coupled model simulations on tectonic timescales, we demonstrate that the PWC was ~38º broader and ~5% more intense during the Early Eocene relative to present. As the climate cooled from the Early Eocene to the Late Miocene, the width of the PWC shrank, accompanied by an increase in intensity that was tied to the enhanced Pacific zonal temperature gradient. However, the locations of the western and eastern branches behave differently from the Early Eocene to the Late Miocene, with the western edge remained steady with time due to the relatively stable geography of the western tropical Pacific; the eastern edge migrates westward with time as the South American continent moves northwest. A transition occurs in the PWC between the Late Miocene and Late Pliocene, manifested by an eastward shift (both the western and eastern edges migrate eastward by >12º) and weakening (by ~22%), which we show here is linked with the closure of the tropical seaways. Moreover, our results suggest that rising CO<sub>2</sub> favors a weaker PWC under the same land-sea configurations, a robust feature across the large spread of Cenozoic climates considered here, supporting a weakening of the PWC in a warmer future.</p>


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Mingna Wu ◽  
Tianjun Zhou ◽  
Chao Li ◽  
Hongmei Li ◽  
Xiaolong Chen ◽  
...  

AbstractThe observational records have shown a strengthening of the Pacific Walker circulation (PWC) since 1979. However, whether the observed change is forced by external forcing or internal variability remains inconclusive, a solid answer to more societal relevantly question of how the PWC will change in the near future is still a challenge. Here we perform a quantitative estimation on the contributions of external forcing and internal variability to the recent observed PWC strengthening using large ensemble simulations from six state-of-the-art Earth system models. We find the phase transition of the Interdecadal Pacific Oscillation (IPO), which is an internal variability mode related to the Pacific, accounts for approximately 63% (~51–72%) of the observed PWC strengthening. Models with sufficient ensemble members can reasonably capture the observed PWC and IPO changes. We further constrain the projection of PWC change by using climate models’ credit in reproducing the historical phase of IPO. The result shows a high probability of a weakened PWC in the near future.


2008 ◽  
Vol 38 (9) ◽  
pp. 1894-1912 ◽  
Author(s):  
M. J. Harrison ◽  
R. W. Hallberg

Abstract Equatorial turbulent diffusivities resulting from breaking gravity waves may be more than a factor of 10 less than those in the midlatitudes. A coupled general circulation model with a layered isopycnal coordinate ocean is used to assess Pacific climate sensitivity to a latitudinally varying background diapycnal diffusivity with extremely low values near the equator. The control experiments have a minimum upper-ocean diffusivity of 10−5 m2 s−1 and are initialized from present-day conditions. The average depth of the σθ = 26.4 interface (z26.4) in the Pacific increases by ∼140 m after 500 yr of coupled model integration. This corresponds to a warming trend in the upper ocean. Low equatorial diffusivities reduce the z26.4 bias by ∼30%. Isopycnal surfaces are elevated from the eastern boundary up to midlatitudes by cooling in the upper several hundred meters, partially compensated by freshening. Entrainment of intermediate water masses from below σθ = 26.4 decreases by ∼1.5 Sv (1 Sv ≡ 106 m3 s−1), mainly in the western tropical Pacific. The Pacific heat uptake (30°S–30°N) from the atmosphere reduces by ∼0.1 PW. This is associated with warmer entrainment temperatures in the eastern equatorial Pacific upwelling region. Equatorward heat transport from the Southern Ocean increases by ∼0.07 PW. Reducing the upper-ocean background diffusivity uniformly to 10−6 m2 s−1 cools the upper ocean from the tropics, but warms and freshens from the midlatitudes. Enhanced convergence into the Pacific of water lighter than σθ = 26.4 compensates the reduction in upwelling of intermediate waters in the tropics. Basin-averaged z26.4 bias increases in the low background case. These results demonstrate basin-scale sensitivity to the observed suppression of equatorial background dissipation. This has clear implications for understanding oceanic heat uptake in the Pacific as well as other important aspects of the climate system. Diapycnal diffusivities due to truncation errors and other numerical artifacts in ocean models may need to be less than 10−6 m2 s−1 in order to accurately represent this effect in climate models.


Sign in / Sign up

Export Citation Format

Share Document