scholarly journals Enhanced aging kinetics in Al-Mg-Si alloys by up-quenching

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Florian Schmid ◽  
Philip Dumitraschkewitz ◽  
Thomas Kremmer ◽  
Peter J. Uggowitzer ◽  
Ramona Tosone ◽  
...  

AbstractPrecipitation-hardened aluminium alloys typically obtain their strength by forming second-phase particles, which, however, often have a negative effect on formability. To enable both lightweight construction and forming of complex parts such as body panels, high strength and formability are required simultaneously. Cluster hardening is a promising approach to achieve this. Here, we show that short thermal spikes, denoted as up-quenching, increase aging kinetics, which we attribute to the repeated process of vacancies being formed at high temperatures and retained when cooled to lower temperatures. Combined with further heat treatment, the up-quenching process promotes rapid and extensive cluster formation in Al-Mg-Si alloys, which in turn generates significant strengthening at industrially relevant heat treatment time scales. The high elongation values also observed are attributed to reduced solute depleted zones along grain boundaries.

2006 ◽  
Vol 519-521 ◽  
pp. 771-776 ◽  
Author(s):  
M. Asano ◽  
Tadashi Minoda ◽  
Y. Ozeki ◽  
Hideo Yoshida

The effects of the copper content on the bendability of Al-Mg-Si alloy T4 sheets were investigated. The Al-Mg-Si alloys with less than 0.01mass%Cu, 0.4mass%Cu and 0.8mass%Cu were prepared, and the time of solution heat treatment was changed to obtain different dispersion conditions of the second phase particles and to obtain different shear band formation conditions by bending. For the samples with less than 0.01mass%Cu and 0.4mass%Cu, no cracks were observed during the bending. For the sample with 0.8mass%Cu, the maximum depth of the crack by bending increased with the time of solution heat treatment up to 75 seconds, and then decreased over 75 seconds. The second phase particles decreased by increasing the solution heat treatment time, while the formation of shear bands by bending increased by increasing the solution heat treatment time and the copper content. The cause of the occurrence and the propagation of cracks by bending are considered to be the combined effect of the shear band formation across some grains and the micro-voids formed around the second phase particles. Improving of the bendability requires a decrease in the size and number of the second phase particles and/or reduced shear band formation during the bending.


2003 ◽  
Vol 19 (7) ◽  
pp. 887-896 ◽  
Author(s):  
G. Liu ◽  
G.-J. Zhang ◽  
X.-D. Ding ◽  
J. Sun ◽  
K.-H. Chen

Metals ◽  
2019 ◽  
Vol 9 (12) ◽  
pp. 1275 ◽  
Author(s):  
Yanjie Mou ◽  
Zhichao Li ◽  
Xiaoteng Zhang ◽  
Devesh Misra ◽  
Lianfang He ◽  
...  

High strength/high elongation continues to be the primary challenge and focus for medium-Mn steels. It is elucidated herein via critical experimental analysis that the cumulative contribution of transformation-induced plasticity (TRIP) and microstructural constituents governs high strength/high elongation in 0.2C–3Al–(6–8.5)Mn–Fe steels. This was enabled by an effective heat treatment involving a combination of intercritical hardening and tempering to obtain high strength/high ductility. An excellent combination of high ultimate tensile strength of 935–1112 MPa and total elongation of 35–40% was obtained when the steels were subjected to intercritical hardening in the temperature range of 700–750 °C and low tempering at 200 °C. The intercritical hardening impacted the coexistence of austenite, ferrite, and martensite, such that the deformation behavior varied with the Mn content. The excellent obtained properties of the steels are attributed to the cumulative contribution of the enhanced TRIP effect of austenite and the microstructural constituents, ferrite and martensite. The discontinuous TRIP effect during deformation involved stress relaxation, which was responsible for the high ductility. Lamellar austenite, unlike the equiaxed microstructure, is envisaged to induce stress relaxation during martensitic transformation, resulting in the discontinuous TRIP effect.


2018 ◽  
Vol 917 ◽  
pp. 64-68
Author(s):  
Wiendartun ◽  
Jaenudin Kamal ◽  
Dadi Rusdiana ◽  
Andhy Setiawan ◽  
Dani Gustaman Syarief

A study on the effect of heat treatment condition on the characteristics of MnO2 added-Fe2TiO5 ceramics for NTC thermistor has been carried out. The ceramics were produced by pressing an homogenous mixture of Fe2O3 (local/ yarosite), TiO2 and MnO2 (2.0 mole %) powders in appropriate proportions to produce Fe2TiO5 based ceramics and sintering the pressed powder at 1050 °C for 3 hours in oxygen gas. Some sintered pellets were heat treated by heating them at 300 °C for 5, 15 and 25 minutes in Ar + 7% H2 gas. The XRD analyses showed that the Fe2TiO5 ceramics with and without heat treatment time had orthorhombic structure. No peak from second phase was observed from the XRD profiles. From the electrical characteristics data, it was known that the heat treatment could change the electrical characteristics of the Fe2TiO5 based-thermistor. The thermistor constant (B) and room temperature resistivity (ρRT) decreased with the increasing of heat treatment time. All ceramics made had thermistor characteristics namely B = 3459-7596 K and ρRT = 1.056-6936.062 MΩcm. Thermistor constant of the ceramics was relatively big, indicated that ceramics made from local iron oxide in this work fit the market requirement for NTC thermistor.


2005 ◽  
Vol 475-479 ◽  
pp. 1401-1404
Author(s):  
J.H. Baek ◽  
Yong Hwan Jeong

The effects of annealing at 570oC and 640oC on the microstructural and corrosion characteristics for Zr-1.0Nb-1.0Sn-0.1Fe alloy were elucidated. After annealing at 570oC below the temperature of a monotectoid reaction in the Zr-Nb system, both orthorhombic Zr3Fe and the bcc b-Nb particles were uniformly found and the mean size of the second phase particles was increased with an increasing of the annealing time. In the case of an annealing at 640oC for 2 h above the monotectoid reaction temperature, the Zr3Fe was observed intermittently and after a longer annealing of 1000 h the b-Zr particles were well developed. The corrosion resistance after the 570oC anneal was improved as the annealing time increased, while that after the 640oC anneal decreased as the annealing time increased. The fraction of the tetragonal phase within the ZrO2 oxide increased as the corrosion resistance was improved. It was concluded that the equilibrium Nb concentration and the formation of the tetragonal ZrO2 due to the b-Nb phase would lead to improving the corrosion resistance of the alloy.


2005 ◽  
Vol 495-497 ◽  
pp. 423-428 ◽  
Author(s):  
Q.W. Jiang ◽  
E.B. Zhao ◽  
J.G. Zhang ◽  
Y. Chen ◽  
Gang Wang ◽  
...  

The microstructure of Ti+P IF steel were studied after warm rolling, cold rolling and recrystallization using X-Ray, TEM and SEM. The results show that the characteristics of warm rolled sheet are the same as that of the cold rolled, but the texture displays different characteristics in the subsequent cold rolling and recrystallization because of the numerous second-phase particles. In this work, a Ti+P IF steel sheet with high strength and plastic strain ratio was obtained.


2014 ◽  
Vol 886 ◽  
pp. 128-131
Author(s):  
Zhuo Fei Song ◽  
Shan Shan Feng ◽  
Yun Li Feng

Precipitation characteristics of second phase in HSLC steel produced by FTSR technology have been researched by TEM and EDS in this article. And preliminary research of precipitation conditions of second phase particles in thermodynamics and dynamics have been took. The results indicate that: there’re second phase particles precipitated dispersively in hot rolled HSLC steels by FTSR technology. These particles mainly contain particles of Al2O3、MnS and AlN. Thermo dynamical analysis declares that most of the Al2O3 and all of the MnS、 AlN particles are precipitated in solid state. That’s why the precipitation process is slowed down by the diffusion velocity of the elements in solid, and thinner particles are precipitated while the material is in solid state than in liquid state.


2011 ◽  
Vol 480-481 ◽  
pp. 433-436
Author(s):  
Mu Meng ◽  
Zhi Min Zhang ◽  
Jian Min Yu ◽  
Xin Kai Li

Aluminum alloy 7A04 compressed at high deformation temperature and large deformation is applied in two different heat treatment (T5 and T6), then microstructure and properties of the alloy after heat treatment are investigated. The mechanical properties are studied by means of the tensile testing and the hardness testing. The microstructure characteristics and the fractorgraphy analysis are respectively investigated with optical microscopy and SEM. The experimental results indicate that after T6 heat treatment, the second-phase particles dispersed in the matrix, which can efficiently improving the strength of the alloy, but reduced the toughness. After T5 heat treatment, the coarse and discontinuous second-phase is distributed along the grain boundary, which can lead to the low strength and high toughness because of the lack of the strengthening phase in the grains. The fracture appearance is intercrystalline fracture after T6 heat treatment, and dimple transgranular fracture after T5 heat treatment.


Author(s):  
Shahid Hussain Abro

It is common practice that formation of second phase particles such as nitrides or carbides in the steel matrix has significant role to control the grain size of steel. An attempt is made in the present research work to find out the role of nitrogen to form the nitride particles either with Al, Ti, B, Cr or Si. Two steel samples Steel-A and Steel-B with same titanium and aluminum weight percent in the chemical composition were obtained in hot rolled conditions from international market with only the difference of presence of Niobium in Steel-A. Solution heat treatment was performed at 1350°C with 60 minutes holding time in protherm heat treatment furnace available locally was used to dissolve the particles and then steel samples were reheat treated at 800°C with holding time of 60 minutes and water quenched and microstructure was revealed. Transmission electron microscope connected with Ehlers-Danlos Syndrome (EDS) was used to reveal the morphology of second phase particles. Both samples for a high resolution power Transmission Electron Microscopy (TEM) (Jeol JEM 3010) analysis were prepared by using carbon extraction replica method in 5% Nital solution as an etching technique. Both samples were then caught in copper grid of 3mm for using TEM analysis. TEM micrographs clearly revealed the second phase particles in the matrix of steel. The EDS peaks were studied and it was found that the peaks showed the titanium peaks in both the samples A and B and surprisingly there was no any peak found for aluminum. Stoichiometric calculations were carried out and it was found that weight percent nitrogen required for forming TiN is 0.0073, however the total nitrogen present in both the steels A and B is 0.0058 and 0.0061 respectively. That means that all the nitrogen present in the steel matrix was consumed by titanium to form the Titanium Nitride (TiN) so there was no nitrogen remain to fulfil the requirement of aluminum to form the Aluminum Nitride (AlN) particles.


Sign in / Sign up

Export Citation Format

Share Document