scholarly journals Subglacial erosion has the potential to sustain microbial processes in Subglacial Lake Whillans, Antarctica

2021 ◽  
Vol 2 (1) ◽  
Author(s):  
Beatriz Gill-Olivas ◽  
Jon Telling ◽  
Martyn Tranter ◽  
Mark Skidmore ◽  
Brent Christner ◽  
...  

AbstractSubglacial Lake Whillans lies below around 800 m of Antarctic ice and is isolated from fresh sources of photosynthetic organic matter to sustain life. The diverse microbial ecosystems within the lake and underlying sediments are therefore dependent on a combination of relict, overridden, marine-derived organic matter and mineral-derived energy. Here, we conduct experiments to replicate subglacial erosion involving both gentle and high-energy crushing of Subglacial Lake Whillans sediments and the subsequent addition of anoxic water. We find that substantial quantities of reduced species, including hydrogen, methane, acetate and ammonium and oxidised species such as hydrogen peroxide, sulfate and carbon dioxide are released. We propose that the concomitant presence of both hydrogen and hydrogen peroxide, alongside high concentrations of mineral surface radicals, suggests that the splitting of water on freshly abraded mineral surfaces increases the concentrations of redox pairs from rock-water reactions and could provide a mechanism to augment the energy available to microbial ecosystems.

2012 ◽  
Vol 9 (1) ◽  
pp. 557-579 ◽  
Author(s):  
Y. Ma ◽  
C. Lin

Abstract. Hydrogen peroxide (H2O2) at a micromolar level played a role in the microbial surface oxidation of pyrite crystals under initially neutral pH. When the mineral-bacteria system was cyclically exposed to 50 μM H2O2, the colonization of \\textit{Acidithiobacillus ferrooxidans} onto the mineral surface was markedly enhanced, as compared to the control (no added H2O2). This can be attributed to the effects of H2O2 on increasing the roughness of the mineral surfaces, as well as the acidity and Fe2+ concentration at the mineral-solution interfaces. All of these effects tended to create more favourable nano- to micro-scale environments in the mineral surfaces for the cell adsorption. However, higher H2O2 levels inhibited the attachment of cells onto the mineral surfaces, possibly due to the oxidative stress in the bacteria when they approached the mineral surfaces where high levels of free radicals are present as a result of Fenton-like reactions. The more aggressive nature of H2O2 as an oxidant caused marked surface flaking of the mineral surface. The XPS results suggest that H2O2 accelerated the oxidation of pyrite-S and consequently facilitated the overall corrosion cycle of pyrite surfaces. This was accompanied by pH drop in the solution in contact with the pyrite cubes.


Author(s):  
J. A. Mikucki ◽  
P. A. Lee ◽  
D. Ghosh ◽  
A. M. Purcell ◽  
A. C. Mitchell ◽  
...  

Liquid water occurs below glaciers and ice sheets globally, enabling the existence of an array of aquatic microbial ecosystems. In Antarctica, large subglacial lakes are present beneath hundreds to thousands of metres of ice, and scientific interest in exploring these environments has escalated over the past decade. After years of planning, the first team of scientists and engineers cleanly accessed and retrieved pristine samples from a West Antarctic subglacial lake ecosystem in January 2013. This paper reviews the findings to date on Subglacial Lake Whillans and presents new supporting data on the carbon and energy metabolism of resident microbes. The analysis of water and sediments from the lake revealed a diverse microbial community composed of bacteria and archaea that are close relatives of species known to use reduced N, S or Fe and CH 4 as energy sources. The water chemistry of Subglacial Lake Whillans was dominated by weathering products from silicate minerals with a minor influence from seawater. Contributions to water chemistry from microbial sulfide oxidation and carbonation reactions were supported by genomic data. Collectively, these results provide unequivocal evidence that subglacial environments in this region of West Antarctica host active microbial ecosystems that participate in subglacial biogeochemical cycling.


Author(s):  
V.K. Berry

There are two strains of bacteria viz. Thiobacillus thiooxidansand Thiobacillus ferrooxidanswidely mentioned to play an important role in the leaching process of low-grade ores. Another strain used in this study is a thermophile and is designated Caldariella .These microorganisms are acidophilic chemosynthetic aerobic autotrophs and are capable of oxidizing many metal sulfides and elemental sulfur to sulfates and Fe2+ to Fe3+. The necessity of physical contact or attachment by bacteria to mineral surfaces during oxidation reaction has not been fairly established so far. Temple and Koehler reported that during oxidation of marcasite T. thiooxidanswere found concentrated on mineral surface. Schaeffer, et al. demonstrated that physical contact or attachment is essential for oxidation of sulfur.


Author(s):  
Xiaoyan Wang ◽  
Jinmei Du ◽  
Changhai Xu

Abstract:: Activated peroxide systems are formed by adding so-called bleach activators to aqueous solution of hydrogen peroxide, developed in the seventies of the last century for use in domestic laundry for their high energy efficiency and introduced at the beginning of the 21st century to the textile industry as an approach toward overcoming the extensive energy consumption in bleaching. In activated peroxide systems, bleach activators undergo perhydrolysis to generate more kinetically active peracids that enable bleaching under milder conditions while hydrolysis of bleach activators and decomposition of peracids may occur as side reactions to weaken the bleaching efficiency. This mini-review aims to summarize these competitive reactions in activated peroxide systems and their influence on bleaching performance.


1991 ◽  
Vol 69 (11) ◽  
pp. 1705-1712 ◽  
Author(s):  
Noburu Konno ◽  
K. J. Kako

Hydrogen peroxide (H2O2) and hypochlorite (HOCl) cause a variety of cellular dysfunctions. In this study we examined the effects of these agents on the electrical potential gradient across the inner membrane of mitochondria in situ in isolated rat heart myocytes. Myocytes were prepared by collagenase digestion and incubated in the presence of H2O2 or HOCl. Transmembrane electrical gradients were measured by distribution of [3H]triphenylmethylphosphonium+, a lipophilic cation. The particulate fraction was separated from the cytosolic compartment first by permeabilization using digitonin, followed by rapid centrifugal sedimentation through a bromododecane layer. We found that the mitochondrial membrane potential (161 ± 7 mV, negative inside) was relatively well maintained under oxidant stress, i.e., the potential was decreased only at high concentrations of HOCl and H2O2 and gradually with time. The membrane potential of isolated rat heart mitochondria was affected similarly by H2O2 and HOCl in a concentration- and time-dependent manner. High concentrations of oxidants also reduced the cellular ATP level but did not significantly change the matrix volume. When the extra-mitochondrial free calcium concentration was increased in permeabilized myocytes, the transmembrane potential was decreased proportionally, and this decrease was potentiated further by H2O2. These results support the view that heart mitochondria are equipped with well-developed defense mechanisms against oxidants, but the action of H2O2 on the transmembrane electrical gradient is exacerbated by an increase in cytosolic calcium. Keywords: ATP, calcium, cardiomyocyte, cell defense, mitochondrial membrane potential, oxidant, triphenylmethylphosphonium.


Chemosphere ◽  
2021 ◽  
pp. 131352
Author(s):  
Yongjing Wang ◽  
Tao Man ◽  
Ruolin Zhang ◽  
Xinyu Yan ◽  
Songtao Wang ◽  
...  

2005 ◽  
Vol 187 (17) ◽  
pp. 5937-5945 ◽  
Author(s):  
Ana Segura ◽  
Patricia Godoy ◽  
Pieter van Dillewijn ◽  
Ana Hurtado ◽  
Nuria Arroyo ◽  
...  

ABSTRACT Pseudomonas putida DOT-T1E is tolerant to toluene and other toxic hydrocarbons through extrusion of the toxic compounds from the cell by means of three efflux pumps, TtgABC, TtgDEF, and TtgGHI. To identify other cellular factors that allow the growth of P. putida DOT-T1E in the presence of high concentrations of toluene, we performed two-dimensional gel analyses of proteins extracted from cultures grown on glucose in the presence and in the absence of the organic solvent. From a total of 531 spots, 134 proteins were observed to be toluene specific. In the absence of toluene, 525 spots were clearly separated and 117 proteins were only present in this condition. Moreover, 35 proteins were induced by at least twofold in the presence of toluene whereas 26 were repressed by at least twofold under these conditions. We reasoned that proteins that were highly induced could play a role in toluene tolerance. These proteins, identified by matrix-assisted laser desorption ionization-time of flight mass spectrometry, were classified into four categories: 1, proteins involved in the catabolism of toluene; 2, proteins involved in the channeling of metabolic intermediates to the Krebs cycle and activation of purine biosynthesis; 3, proteins involved in sugar transport; 4, stress-related proteins. The set of proteins in groups 2 and 3 suggests that the high energy demand required for solvent tolerance is achieved via activation of cell metabolism. The role of chaperones that facilitate the proper folding of newly synthesized proteins under toluene stress conditions was analyzed in further detail. Knockout mutants revealed that CspA, XenA, and Tuf-1 play a role in solvent tolerance in Pseudomonas, although this role is probably not specific to toluene, as indicated by the fact that all mutants grew more slowly than the wild type without toluene.


2009 ◽  
Vol 59 (7) ◽  
pp. 1361-1369 ◽  
Author(s):  
Edison Gil Pavas ◽  
Miguel Ángel Gómez-García

This work deals with the treatment of the wastewaters resulting from the process of dyeing flowers. In some local cases for growing flowers near to Medellín (Colombia), wastewater color was found to be one of the main problems in meeting local effluent standards. Wastewaters were treated by photodegradation process (which includes photocatalysis) to achieve the degradation of dyes mixture and organic matter in the wastewater. A multifactorial experimental design was proposed, including as experimental factors the following variables: pH, and the concentration of both catalyst (TiO2) and hydrogen peroxide (H2O2). According to the obtained results, at the optimized variables values, it is possible to reach a 99% reduction of dyes, a 76.9% of mineralization (TOC) and a final biodegradability of 0.834. Kinetic analysis allows proposing a pseudo first order reaction for the reduction, the mineralization, and the biodegradation processes.


Sign in / Sign up

Export Citation Format

Share Document