scholarly journals Persistence of birth mode-dependent effects on gut microbiome composition, immune system stimulation and antimicrobial resistance during the first year of life

2021 ◽  
Vol 1 (1) ◽  
Author(s):  
Susheel Bhanu Busi ◽  
Laura de Nies ◽  
Janine Habier ◽  
Linda Wampach ◽  
Joëlle V. Fritz ◽  
...  

AbstractCaesarean section delivery (CSD) disrupts mother-to-neonate transmission of specific microbial strains and functional repertoires as well as linked immune system priming. Here we investigate whether differences in microbiome composition and impacts on host physiology persist at 1 year of age. We perform high-resolution, quantitative metagenomic analyses of the gut microbiomes of infants born by vaginal delivery (VD) or by CSD, from immediately after birth through to 1 year of life. Several microbial populations show distinct enrichments in CSD-born infants at 1 year of age including strains of Bacteroides caccae, Bifidobacterium bifidum and Ruminococcus gnavus, whereas others are present at higher levels in the VD group including Faecalibacterium prausnitizii, Bifidobacterium breve and Bifidobacterium kashiwanohense. The stimulation of healthy donor-derived primary human immune cells with LPS isolated from neonatal stool samples results in higher levels of tumour necrosis factor alpha (TNF-α) in the case of CSD extracts over time, compared to extracts from VD infants for which no such changes were observed during the first year of life. Functional analyses of the VD metagenomes at 1 year of age demonstrate a significant increase in the biosynthesis of the natural antibiotics, carbapenem and phenazine. Concurrently, we find antimicrobial resistance (AMR) genes against several classes of antibiotics in both VD and CSD. The abundance of AMR genes against synthetic (including semi-synthetic) agents such as phenicol, pleuromutilin and diaminopyrimidine are increased in CSD children at day 5 after birth. In addition, we find that mobile genetic elements, including phages, encode AMR genes such as glycopeptide, diaminopyrimidine and multidrug resistance genes. Our results demonstrate persistent effects at 1 year of life resulting from birth mode-dependent differences in earliest gut microbiome colonisation.

2019 ◽  
Author(s):  
Benedetta Raspini ◽  
Debora Porri ◽  
Rachele De Giuseppe ◽  
Marcello Chieppa ◽  
Marina Liso ◽  
...  

Abstract Background Fetal programming during in utero life defines the set point of physiological and metabolic responses that lead into adulthood; events happening in “the first 1,000 days” play a role in the development of non-communicable diseases (NCDs). The infant gut microbiome is a highly dynamic organ, which is sensitive to maternal factors and environmental insults; it modifies its composition over the host’s lifespan and is one of the elements driving this intergenerational NCDs' transmission. The A.MA.MI (Alimentazione MAmma e bambino nei primi MIlle giorni) project aims at investigating the possible correlation between pre-natal and post-natal factors and the infant gut microbiome composition, during the first year of life at different follow-up. We describe the study design of the A.MA.MI Study and present some preliminary results.Methods A.MA.MI is a longitudinal, prospective, observational study that includes a group of mother-infant pairs (n=63) attending the Neonatal Unit, Fondazione IRCCS Policlinico San Matteo, Pavia (Italy). The study was planned to provide data collected before discharge (T0) and at 1,6,12 months after birth (T1,T2,T3). Maternal and infant anthropometric measurements are assessed at each time. Other variables evaluated are pre-pregnancy/gestational weight status (T0), maternal dietary habits/physical activity (T1-T3); infant medical history, type of feeding, antibiotics/probiotics/supplements use, environment exposures (e.g cigarette smoking, pets, environmental temperature) (T1-T3). A child stool sample was planned to be collected at each time and analyzed using metagenomics 16S ribosomal RNA gene sequence-based methods. Maternal urine samples were planned to be collected at T3 to investigate pollutants exposure (Phthalates, Bisphenol A and Hydroxypyrene).Results Concerning the birth mode (cesarean section vs. vaginal delivery) significant differences were found only at genera and species levels (T0). A significantly higher relative abundance of Firmicutes was found in meconium of infants born from mothers affected by overweight/obesity, when compared to women with normal weight before pregnancy (T0). Regards type of feeding (breastfed vs formula-fed) the gut microbiota composition differed significantly only at genus and species level (T1).Conclusion These preliminary and explorative results confirmed that pre-pregnancy BMI, mode of delivery and infant factors could affect the infant microbiota composition at different levels.


2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Alexander L. Carlson ◽  
Kai Xia ◽  
M. Andrea Azcarate-Peril ◽  
Samuel P. Rosin ◽  
Jason P. Fine ◽  
...  

AbstractExperimental manipulation of gut microbes in animal models alters fear behavior and relevant neurocircuitry. In humans, the first year of life is a key period for brain development, the emergence of fearfulness, and the establishment of the gut microbiome. Variation in the infant gut microbiome has previously been linked to cognitive development, but its relationship with fear behavior and neurocircuitry is unknown. In this pilot study of 34 infants, we find that 1-year gut microbiome composition (Weighted Unifrac; lower abundance of Bacteroides, increased abundance of Veillonella, Dialister, and Clostridiales) is significantly associated with increased fear behavior during a non-social fear paradigm. Infants with increased richness and reduced evenness of the 1-month microbiome also display increased non-social fear. This study indicates associations of the human infant gut microbiome with fear behavior and possible relationships with fear-related brain structures on the basis of a small cohort. As such, it represents an important step in understanding the role of the gut microbiome in the development of human fear behaviors, but requires further validation with a larger number of participants.


2018 ◽  
Vol 17 (2) ◽  
Author(s):  
V. F. Mislitsky ◽  
S. S. Tkachuk ◽  
Yu. G. Masikevich ◽  
I. P. Burdenyuk ◽  
M. D. Perepelyuk ◽  
...  

2015 ◽  
Vol 17 (5) ◽  
pp. 690-703 ◽  
Author(s):  
Fredrik Bäckhed ◽  
Josefine Roswall ◽  
Yangqing Peng ◽  
Qiang Feng ◽  
Huijue Jia ◽  
...  

2015 ◽  
Vol 17 (6) ◽  
pp. 852 ◽  
Author(s):  
Fredrik Bäckhed ◽  
Josefine Roswall ◽  
Yangqing Peng ◽  
Qiang Feng ◽  
Huijue Jia ◽  
...  

2016 ◽  
Author(s):  
Melissa N. Conley ◽  
Carmen P. Wong ◽  
Kyle M. Duyck ◽  
Norman Hord ◽  
Emily Ho ◽  
...  

Introduction Age is the primary risk factor for major human chronic diseases, including cardiovascular disorders, cancer, type 2 diabetes, and neurodegenerative diseases. Chronic, low-grade, systemic inflammation is associated with aging and the progression of immunosenescence. Immunosenescence may play an important role in the development of age-related chronic disease and the widely observed phenomenon of increased production of inflammatory mediators that accompany this process, referred to as “inflammaging”. While it has been demonstrated that the gut microbiome and immune system interact, the relationship between the gut microbiome and age remains to be clearly defined, particularly in the context of inflammation. The aim of the study was to clarify the associations between age, the gut microbiome, and pro-inflammatory marker serum MCP-1 in a C57BL/6 murine model. Results We used 16S rRNA gene sequencing to profile the composition of fecal microbiota associated with young and aged mice. Our analysis identified an association between microbiome structure and mouse age, and revealed specific groups of taxa whose abundances stratify young and aged mice. This includes the Ruminococcaceae, Clostridiaceae, and Enterobacteriaceae. We also profiled pro-inflammatory serum MCP-1 levels of each mouse and found that aged mice exhibited elevated serum MCP-1, a phenotype consistent with inflammaging. Robust correlation tests identified several taxa whose abundance in the microbiome associates with serum MCP-1 status, indicating that they may interact with the mouse immune system. We find that taxonomically similar organisms can exhibit differing, even opposite, patterns of association with the host immune system. We also find that many of the OTUs that associate with serum MCP-1 also stratify individuals by age. Discussion Our results demonstrate that gut microbiome composition is associated with age and the pro-inflammatory marker, serum MCP-1. The correlation between age, relative abundance of specific taxa in the gut microbiome, and serum MCP-1 status in mice indicates that the gut microbiome may play a modulating role in age-related inflammatory processes. These findings warrant further investigation of taxa associated with the inflammaging phenotype and the role of gut microbiome in the health status and immune function of aged individuals.


Author(s):  
Iván Enrique Naranjo Logroño ◽  
Leslie Gricel Cuzco Macías ◽  
Alison Tamara Ruiz Chico ◽  
Anthony Alfonso Naranjo Coronel

Introduction: The human microbiome refers to the presence of microorganisms that live with its host. Objective: To analyze the relationship between the maternal perinatal microbiome and the development of the infant’s immune system, at the origins of the development of health and disease. Methodology: A non-systematic bibliographic review was carried out, including those controlled and randomized clinical trials focused on the relationship of the prenatal maternal microbiome and the infant’s immune system. And all those works whose approach was different from the topic raised were excluded. Discussion: 20 min after birth, the microbiome of newborns by vaginal delivery resembles the microbiota of their mother’s vagina, while those born by caesarean section house microbial communities that are usually found in human skin. The acquisition of the microbiome continues during the first years of life, with a microbiome of the baby’s gastrointestinal tract beginning to resemble that of an adult from the first year of life. Conclusion: Bacteria are microorganisms that have managed to colonize the vast majority of land surfaces, showing great adaptability. The human being is not indifferent, and hypotheses have been raised that affirm his participation in the development of health and the onset of the disease. Keywords: microbiota, inmune system, infant nutritional physiological phenomena. RESUMEN Introducción: El microbioma humano se refiere a la presencia de microorganismos que conviven con su hospedero. Objetivo: Analizar la relación existente entre el microbioma materno perinatal y el desarrollo del sistema inmune del lactante, en los orígenes del desarrollo de la salud y enfermedad. Metodología: Se realizó una revisión bibliográfica no sistemática, donde se incluyeron aquellos ensayos clínicos controlados y randomizados enfocados en la relación del microbioma materno prenatal y el sistema inmune del lactante. Y se excluyeron todos aquellos trabajos cuyo enfoque fue diferente al tema planteado. Resultados: Se encontraron 61 fuentes bibliográficas, de las cuales se incluyeron 53 artículos que contenían la información relacionada al tema y publicados en los últimos 11 años. Discusión: 20 min después del nacimiento, el microbioma de los recién nacidos por parto vaginal se asemeja a la microbiota de la vagina de su madre, mientras que los nacidos por cesárea albergan comunidades microbianas que generalmente se encuentran en la piel humana. La adquisición del microbioma continúa durante los primeros años de vida, con un el microbioma del tracto gastrointestinal del bebé comienza a parecerse al de un adulto desde el primer año de vida. Conclusiones: Las bacterias, son microorganismos que han logrado colonizar la gran mayoría de las superficies terrestres, mostrando una gran capacidad de adaptación. El ser humano, no es indiferente, y se han planteado hipótesis que aseveran su participación en el desarrollo de la salud e inicio de la enfermedad. Palabras clave: microbiota, sistema inmunológico, fenómenos fisiológicos nutricionales del lactante.


Author(s):  
Stijn P. Andeweg ◽  
Can Keşmir ◽  
Bas E. Dutilh

AbstractObjectiveThe gut microbiome is affected by a number of factors, including the innate and adaptive immune system. The major histocompatibility complex (MHC), or the human leukocyte antigen (HLA) in humans, performs an essential role in vertebrate immunity, and is very polymorphic in different populations. HLA determines the specificity of T lymphocyte and natural killer (NK) cell responses, including against the commensal bacteria present in the human gut. Thus, it is likely that our HLA molecules and thereby the adaptive immune response, can shape the composition of our microbiome. Here, we investigated the effect of HLA haplotype on the microbiome composition.ResultsWe performed HLA typing and microbiota composition analyses on 3,002 public human gut microbiome datasets. We found that (i) individuals with functionally similar HLA molecules (i.e. presenting similar peptides) are also similar in their microbiota, and (ii) HLA homozygosity correlated with microbiome diversity, suggesting that diverse immune responses limit microbiome diversity.ConclusionOur results show a statistical association between host HLA haplotype and gut microbiome composition. Because the HLA haplotype is a readily measurable parameter of the human immune system, these results open the door to incorporating the immune system into predictive microbiome models.IMPORTANCEThe microorganisms that live in the digestive tracts of humans, known as the gut microbiome, are essential for hosts survival as they support crucial functions. For example, they support the host in facilitating the uptake of nutrients and give colonization resistance against pathogens. The composition of the gut microbiome varies among humans. Studies have proposed multiple factors driving the observed variation, including; diet, lifestyle, and health condition. Another major influence on the microbiome is the host’s genetic background. We hypothesized the immune system to be one of the most important genetic factors driving the differences observed between gut microbiomes. Therefore, we are interested in linking the polymorphic molecules that play a role in human immune responses to the composition of the microbiome. HLA molecules are the most polymorphic molecules in our genome and therefore makes an excellent candidate to test such an association/link. To our knowledge for the first time, our results indicate a significant impact of the HLA on the human gut microbiome composition.


Sign in / Sign up

Export Citation Format

Share Document