scholarly journals Epigenetic regulation of OAS2 shows disease-specific DNA methylation profiles at individual CpG sites

2016 ◽  
Vol 6 (1) ◽  
Author(s):  
Xiaolian Gu ◽  
Linda Boldrup ◽  
Philip J. Coates ◽  
Robin Fahraeus ◽  
Elisabet Nylander ◽  
...  
2019 ◽  
Vol 31 (1) ◽  
pp. 126
Author(s):  
J. E. Duan ◽  
Z. Jiang ◽  
F. Alqahtani ◽  
I. Mandoiu ◽  
H. Dong ◽  
...  

Dynamic changes in DNA methylation are crucial in the epigenetic regulation of mammalian embryogenesis. Global DNA methylation studies in the bovine, however, remain mostly at the immunostaining level. We adopted the single-cell whole-genome bisulfite sequencing method to characterise stage-specific genome-wide DNA methylation in bovine sperm, individual oocytes derived invivo and invitro, and invivo-developed embryos at the 2-, 4-, 8-, and 16-cell stages. This method allowed us to theoretically cover all CpG sites in the genome using a limited number of cells from single embryos. Pools of 20 sperm were selected from a bull with proven fertility. Single oocytes (n=6) and embryos (n=4 per stage) were collected from Holstein cows (n=10). Single-cell whole-genome bisulfite sequencing libraries were prepared and sequenced using the Illumina HiSEqn 4000 platform (Illumina, San Diego, CA, USA). Sequencing reads were filtered and aligned to the bovine reference genome (UMD 3.1.1) using Bismark (Krueger and Andrews 2011Bioinformatics27, 1571-1572, DOI: 10.1093/bioinformatics/btr167).A 300-bp tile-based method was applied to bin the genome into consecutive windows to facilitate comparison across samples. The DNA methylation level was calculated as the fraction of read counts of the total number of cytosines (methylated) in the total read counts of reported cytosines and thymines (methylated and unmethylated), only if more than 3 CpG sites were covered in this tile. Gamete-specific differentially methylated regions were identified when DNA methylation levels were greater than 75% in one type of gamete and less than 25% in the other with false discovery rate-corrected Fisher’s exact test P-values of less than 0.05. The major wave of genome-wide DNA demethylation was complete at the 8-cell stage when de novo methylation became prominent. Sperm and oocytes had numerous differentially methylated regions that were enriched in intergenic regions. Differentially methylated regions were also identified between invivo- and invitro-matured oocytes. Moreover, X chromosome methylation followed the global dynamic patterns. Virtually no (less than 1.5%) DNA methylation was found in mitochondrial DNA. Finally, using our RNA sequencing data generated from the same developmental stages (Jiang et al. 2014 BMC Genomics 15, 756; DOI: 10.1186/1471-2164-15-756), we revealed an inverse correlation between gene expression and promoter methylation. Our study provides the first fully comprehensive analysis of the global dynamics of DNA methylation in bovine gametes and single early embryos using single-cell whole-genome bisulfite sequencing. These data provide insights into the critical features of the methylome of bovine embryos and serve as an important reference for embryos produced by assisted reproduction, such as IVF and cloning, and a model for human early embryo epigenetic regulation.


2017 ◽  
Vol 37 (03) ◽  
pp. 219-230 ◽  
Author(s):  
Veronica Massey ◽  
Joaquin Cabezas ◽  
Ramon Bataller

AbstractLiver fibrosis is a common consequence of chronic liver injury and is a key determinant of liver-associated morbidity and mortality. Identification of new mechanisms of fibrosis, including disease-specific molecular drivers, remains relevant to reveal novel biomarkers and therapeutic targets. Recently, greater accessibility to more advanced molecular methods that can assess changes in epigenetic regulation has stimulated more research investigating the epigenetic landscape of liver fibrosis. Such studies have revealed changes in DNA methylation, histone acetylation, and microRNAs that regulate the fibrogenic response to injury including hepatic stellate cell activation. The aim of this review is to briefly introduce the general mechanisms and epigenetic regulation of liver fibrosis and to familiarize the reader with the chief epigenetic mechanisms implicated as drivers of liver fibrosis.


2020 ◽  
Vol 26 (Supplement_1) ◽  
pp. S31-S32
Author(s):  
Suresh Venkateswaran ◽  
Varun Kilaru ◽  
Hari Somineni ◽  
Jason Matthews ◽  
Jeffrey Hyams ◽  
...  

Abstract Background Although inflammatory bowel disease (IBD) is heritable, the heritability is still largely unexplained despite substantial progress through GWAS and WGS. However, recent advances in epigenetics (gene environmental interactions), including DNA methylation (DNAm) analysis, has identified new disease-specific mechanisms controlling gene expression. We recently showed that IBD-associated blood DNAm patterns strongly correlated with inflammation (CRP as surrogate marker) and reverted to patterns seen in healthy controls following treatment, regardless of whether or not the underlying IBD was in remission, suggesting blood DNAm is more representative of the systemic inflammatory status rather than disease status (Gastroenterology, 2019, 156 (8): 2254–2265). Thus, we aimed to study DNAm patterns in rectal biopsies hypothesizing that DNAm in rectal biopsies will reflect disease status rather than systemic inflammatory status alone. Method Genome-wide DNA methylation was measured using the Illumina MethylationEPIC array on rectal biopsy DNA samples of 85 non-inflammatory, non-IBD controls and 215 newly diagnosed ulcerative colitis (UC) patients prior to therapy, along with 49 one-year follow-up UC cases (PROTECT cohort) to identify disease specific methylation patterns. Epigenome wide association studies (EWAS) were performed with UC and CRP as the outcomes in linear models adjusted for age, gender, race and five genotype-based principal components. Results At diagnosis, 2446 disease-specific CpG sites in rectal tissue (FDR<0.05) were identified. At baseline, the disease-associated DNAm signature in rectal tissue is distinct from our previous study from blood as only 15 CpGs were common between rectal tissue DNAm and blood DNAm. In contrast to what was observed in blood DNAm where the initial DNAm signature reverted back to control levels upon treatment, rectal tissue DNAm signatures remained persistent during follow-up (Figure 1). The majority of the disease-specific CpG sites identified in rectal biopsies showed a strong positive correlation with CRP. This evidence suggests that the treatment affects systemic measures of inflammation more strongly than disease tissues. Conclusion When studied longitudinally, the UC-specific DNA methylation patterns in rectal tissue are distinct from blood samples. In contrast to blood DNAm which normalizes after therapy during follow-up, rectal tissue DNAm changes persist after treatment in UC. This suggests the currently available therapies control the systemic inflammation effectively, but have less direct effect on the disease itself. Future therapies targeting disease-specific DNAm may be more effective in disease management and long-term remission.


2020 ◽  
Vol 158 (3) ◽  
pp. S50-S51
Author(s):  
Suresh Venkateswaran ◽  
Varun Kilaru ◽  
Hari Somineni ◽  
Jason Matthews ◽  
Jeffrey Hyams ◽  
...  

2008 ◽  
Vol 31 (4) ◽  
pp. 11
Author(s):  
Manda Ghahremani ◽  
Courtney W Hannah ◽  
Maria Peneherrera ◽  
Karla L Bretherick ◽  
Margo R Fluker ◽  
...  

Background/Purpose: Premature ovarian failure (POF) affects 1% of women with a largely idiopathic and poorly understood etiology. The objective of this study was to identify specific epigenetic alterations by measuring DNA methylation of gene regulatory regions in women with POF vs. controls. Methods: Blood samples were collected from idiopathic POFpatients (Amenorrhea for at least 3 months and 2 serum FSH levels of > 40mIU/ml obtained > 1 month apart prior to age 40) and control women (CW) (healthy pregnancy after age 37 with out a pregnancy loss). Genomic DNA was extracted from EDTA anticoagulated blood and bisulfite converted for analysis using the Illumina Golden Gate Methylation Panel which measures DNA methylation at 1506 CpG sites in the promoter regions of 807 genes in 10 POF and 12 CW. Candidate genes with altered epigenetic marks between POF and CW at a nominal P-value < 0.05 were identified using a t-testcomparison within the Illumina bead studio software. Genes of interest were further analyzed for quantitative methylation at specific CpG sites using pyrosequencing in 30 POF and 30 CW. Results: Comparison of DNA methylation profiles of our initial POF and CW groups identified several genes with statistically significanthyper- or hypo- methylation in the POF group (P < 0.05), including the Androgen Receptor (AR)promoter region, which was significantly hypermethylated. To further validate these results, DNA methylation of the AR gene promoter was quantified bypryosequencing in a larger group of POF and CW. Pyrosequencing further confirmed a significantly higher DNA methylation of the AR promoter region inPOF vs. CW (P=0.007). Conclusions: This is a novel study identifying epigenetic alterations in POF. The hypermethylation of the AR gene in POF patients may cause decreased level of the AR in these women. This is especially interesting given a recent report of induced POF in AR deficient mice^1. Specific epigenetic markers, as identified by DNA methylation array profiling in blood, may serve as useful biomarkers for POF and other fertility disorders. However, it will need to be determined if these methylation changes are present prior to diagnosis, or are a consequence of menopause itself. Reference: 1.Hiroko S. et al. Premature ovarian failure in androgenreceptor deficient mice. PNAS;103:224-9


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Chiara Moccia ◽  
Maja Popovic ◽  
Elena Isaevska ◽  
Valentina Fiano ◽  
Morena Trevisan ◽  
...  

Abstract Background Low birthweight has been repeatedly associated with long-term adverse health outcomes and many non-communicable diseases. Our aim was to look-up cord blood birthweight-associated CpG sites identified by the PACE Consortium in infant saliva, and to explore saliva-specific DNA methylation signatures of birthweight. Methods DNA methylation was assessed using Infinium HumanMethylation450K array in 135 saliva samples collected from children of the NINFEA birth cohort at an average age of 10.8 (range 7–17) months. The association analyses between birthweight and DNA methylation variations were carried out using robust linear regression models both in the exploratory EWAS analyses and in the look-up of the PACE findings in infant saliva. Results None of the cord blood birthweight-associated CpGs identified by the PACE Consortium was associated with birthweight when analysed in infant saliva. In saliva EWAS analyses, considering a false discovery rate p-values < 0.05, birthweight as continuous variable was associated with DNA methylation in 44 CpG sites; being born small for gestational age (SGA, lower 10th percentile of birthweight for gestational age according to WHO reference charts) was associated with DNA methylation in 44 CpGs, with only one overlapping CpG between the two analyses. Despite no overlap with PACE results at the CpG level, two of the top saliva birthweight CpGs mapped at genes associated with birthweight with the same direction of the effect also in the PACE Consortium (MACROD1 and RPTOR). Conclusion Our study provides an indication of the birthweight and SGA epigenetic salivary signatures in children around 10 months of age. DNA methylation signatures in cord blood may not be comparable with saliva DNA methylation signatures at about 10 months of age, suggesting that the birthweight epigenetic marks are likely time and tissue specific.


2021 ◽  
Vol 13 (1) ◽  
Author(s):  
Peiru Liu ◽  
Jing Zhang ◽  
Duo Du ◽  
Dandan Zhang ◽  
Zelin Jin ◽  
...  

Abstract Background Thoracic aortic dissection (TAD) is a severe disease with limited understandings in its pathogenesis. Altered DNA methylation has been revealed to be involved in many diseases etiology. Few studies have examined the role of DNA methylation in the development of TAD. This study explored alterations of the DNA methylation landscape in TAD and examined the potential role of cell-free DNA (cfDNA) methylation as a biomarker in TAD diagnosis. Results Ascending aortic tissues from TAD patients (Stanford type A; n = 6) and healthy controls (n = 6) were first examined via whole-genome bisulfite sequencing (WGBS). While no obvious global methylation shift was observed, numerous differentially methylated regions (DMRs) were identified, with associated genes enriched in the areas of vasculature and heart development. We further confirmed the methylation and expression changes in homeobox (Hox) clusters with 10 independent samples using bisulfite pyrosequencing and quantitative real-time PCR (qPCR). Among these, HOXA5, HOXB6 and HOXC6 were significantly down-regulated in TAD samples relative to controls. To evaluate cfDNA methylation pattern as a biomarker in TAD diagnosis, cfDNA from TAD patients (Stanford type A; n = 7) and healthy controls (n = 4) were examined by WGBS. A prediction model was built using DMRs identified previously from aortic tissues on methylation data from cfDNA. Both high sensitivity (86%) and specificity (75%) were achieved in patient classification (AUC = 0.96). Conclusions These findings showed an altered epigenetic regulation in TAD patients. This altered epigenetic regulation and subsequent altered expression of genes associated with vasculature and heart development, such as Hox family genes, may contribute to the loss of aortic integrity and TAD pathogenesis. Additionally, the cfDNA methylation in TAD was highly disease specific, which can be used as a non-invasive biomarker for disease prediction.


2021 ◽  
Vol 18 (1) ◽  
Author(s):  
Katherine R. Dobbs ◽  
Paula Embury ◽  
Emmily Koech ◽  
Sidney Ogolla ◽  
Stephen Munga ◽  
...  

Abstract Background Age-related changes in adaptive and innate immune cells have been associated with a decline in effective immunity and chronic, low-grade inflammation. Epigenetic, transcriptional, and functional changes in monocytes occur with aging, though most studies to date have focused on differences between young adults and the elderly in populations with European ancestry; few data exist regarding changes that occur in circulating monocytes during the first few decades of life or in African populations. We analyzed DNA methylation profiles, cytokine production, and inflammatory gene expression profiles in monocytes from young adults and children from western Kenya. Results We identified several hypo- and hyper-methylated CpG sites in monocytes from Kenyan young adults vs. children that replicated findings in the current literature of differential DNA methylation in monocytes from elderly persons vs. young adults across diverse populations. Differentially methylated CpG sites were also noted in gene regions important to inflammation and innate immune responses. Monocytes from Kenyan young adults vs. children displayed increased production of IL-8, IL-10, and IL-12p70 in response to TLR4 and TLR2/1 stimulation as well as distinct inflammatory gene expression profiles. Conclusions These findings complement previous reports of age-related methylation changes in isolated monocytes and provide novel insights into the role of age-associated changes in innate immune functions.


Children ◽  
2021 ◽  
Vol 8 (2) ◽  
pp. 92
Author(s):  
Sung-Chou Li ◽  
Ho-Chang Kuo ◽  
Lien-Hung Huang ◽  
Wen-Jiun Chou ◽  
Sheng-Yu Lee ◽  
...  

DNA methylation levels are associated with neurodevelopment. Attention-deficit/hyperactivity disorder (ADHD), characterized by attention deficits, is a common neurodevelopmental disorder. We used methylation microarray and pyrosequencing to detect peripheral blood DNA methylation markers of ADHD. DNA methylation profiling data from the microarray assays identified potential differentially methylated CpG sites between 12 ADHD patients and 9 controls. Five candidate CpG sites (cg00446123, cg20513976, cg07922513, cg17096979, and cg02506324) in four genes (LIME1, KCNAB2, CAPN9, and SPTBN2) were further examined with pyrosequencing. The attention of patients were tested using the Conners’ Continuous Performance Test (CPT). In total, 126 ADHD patients with a mean age of 9.2 years (78.6% males) and 72 healthy control subjects with a mean age of 9.3 years (62.5% males) were recruited. When all participants were categorized by their CPT performance, the DNA methylation levels in LIME1 (cg00446123 and cg20513976) were found to be significantly higher and those in SPTBN2 (cg02506324) were significantly lower in children with worse CPT performance. Therefore, DNA methylation of two CpG sites in LIME1 and one CpG site in SPTBN2 is associated with attention deficits in children. DNA methylation biomarkers may assist in identifying attention deficits of children in clinical settings.


Sign in / Sign up

Export Citation Format

Share Document