scholarly journals Neuroprotection after a first episode of mania: a randomized controlled maintenance trial comparing the effects of lithium and quetiapine on grey and white matter volume

2017 ◽  
Vol 7 (1) ◽  
pp. e1011-e1011 ◽  
Author(s):  
M Berk ◽  
O Dandash ◽  
R Daglas ◽  
S M Cotton ◽  
K Allott ◽  
...  

Abstract Lithium and quetiapine are effective treatments for bipolar disorder, but their potential neuroprotective effects in humans remain unclear. A single blinded equivalence randomized controlled maintenance trial was conducted in a prospective cohort of first-episode mania (FEM) patients (n=26) to longitudinally compare the putative protective effects of lithium and quetapine on grey and white matter volume. A healthy control sample was also collected (n=20). Using structural MRI scans, voxel-wise grey and white matter volumes at baseline and changes over time in response to treatment were investigated. Patients were assessed at three time points (baseline, 3 and 12-month follow-up), whereas healthy controls were assessed at two time points (baseline and 12-month follow-up). Patients were randomized to lithium (serum level 0.6 mmol l−1, n=20) or quetiapine (flexibly dosed up to 800 mg per day, n=19) monotherapy. At baseline, compared with healthy control subjects, patients with FEM showed reduced grey matter in the orbitofrontal cortex, anterior cingulate, inferior frontal gyrus and cerebellum. In addition, patients had reduced internal capsule white matter volume bilaterally (t 1,66>3.20, P<0.01). Longitudinally, there was a significant treatment × time effect only in the white matter of the left internal capsule (F2,112=8.54, P<0.01). Post hoc testing showed that, compared with baseline, lithium was more effective than quetiapine in slowing the progression of white matter volume reduction after 12 months (t 1,24=3.76, P<0.01). Our data support the role of lithium but not quetiapine therapy in limiting white matter reduction early in the illness course after FEM.

2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Mi Yang ◽  
Shan Gao ◽  
Xiangyang Zhang

Abstract Cognitive impairment is viewed as a core symptom of schizophrenia (SCZ), but its pathophysiological mechanism remains unclear. White matter (WM) disruption is considered to be a central abnormality that may contribute to cognitive impairment in SCZ patients. However, few studies have addressed the association between cognition and WM integrity in never-treated first-episode (NTFE) patients with SCZ. In this study, we used the MATRICS Consensus Cognitive Battery (MCCB) to evaluate cognitive function in NTFE patients (n = 39) and healthy controls (n = 30), and associated it with whole-brain fractional anisotropy (FA) values obtained via voxel-based diffusion tensor imaging. We found that FA was lower in five brain areas of SCZ patients, including the cingulate gyrus, internal capsule, corpus callosum, cerebellum, and brainstem. Compared with the healthy control group, the MCCB’s total score and 8 out of 10 subscores were significantly lower in NTFE patients (all p < 0.001). Moreover, in patients but not healthy controls, the performance in the Trail Making Test was negatively correlated with the FA value in the left cingulate. Our findings provide evidence that WM disconnection is involved in some cognitive impairment in the early course of SCZ.


2008 ◽  
Vol 193 (3) ◽  
pp. 210-215 ◽  
Author(s):  
Mark Walterfang ◽  
Philip K. McGuire ◽  
Alison R. Yung ◽  
Lisa J. Phillips ◽  
Dennis Velakoulis ◽  
...  

BackgroundGrey matter changes have been described in individuals who are pre- and peri-psychotic, but it is unclear if these changes are accompanied by changes in white matter structures.AimsTo determine whether changes in white matter occur prior to and with the transition to psychosis in individuals who are pre-psychotic who had previously demonstrated grey matter reductions in frontotemporal regions.MethodWe used magnetic resonance imaging (MRI) to examine regional white matter volume in 75 people with prodromal symptoms. A subset of the original group (n=21) were rescanned at 12–18 months to determine white matter volume changes. Participants were retrospectively categorised according to whether they had or had not developed psychosis at follow-up.ResultsComparison of the baseline MRI data from these two subgroups revealed that individuals who later developed psychosis had larger volumes of white matter in the frontal lobe, particularly in the left hemisphere. Longitudinal comparison of data in individuals who developed psychosis revealed a reduction in white matter volume in the region of the left fronto-occipital fasciculus. Participants who had not developed psychosis showed no reductions in white matter volume but increases in a region subjacent to the right inferior parietal lobule.DiscussionThe reduction in volume of white matter near the left fronto-occipital fasciculus may reflect a change in this tract in association with the onset of frank psychosis.


2014 ◽  
Vol 153 ◽  
pp. S211
Author(s):  
Renate L. Reniers ◽  
Belinda Garner ◽  
Christina Phassouliotis ◽  
Lisa Phillips ◽  
Connie Markulev ◽  
...  

2012 ◽  
Vol 42 (9) ◽  
pp. 1847-1856 ◽  
Author(s):  
M. Rais ◽  
W. Cahn ◽  
H. G. Schnack ◽  
H. E. Hulshoff Pol ◽  
R. S. Kahn ◽  
...  

BackgroundGlobal brain abnormalities such as brain volume loss and grey- and white-matter deficits are consistently reported in first-episode schizophrenia patients and may already be detectable in the very early stages of the illness. Whether these changes are dependent on medication use or related to intelligence quotient (IQ) is still debated.MethodMagnetic resonance imaging scans were obtained for 20 medication-naive patients with first-episode schizophrenia and 26 matched healthy subjects. Volume measures of total brain grey and white matter, third and lateral ventricles and cortical thickness/surface were obtained. Differences between the groups were investigated, taking into account the effect of intelligence.ResultsMedication-naive patients showed statistically significant reductions in whole-brain volume and cerebral grey- and white-matter volume together with lateral ventricle enlargement compared to healthy subjects. IQ was significantly lower in patients compared to controls and was positively associated with brain and white-matter volume in the whole group. No significant differences in cortical thickness were found between the groups but medication-naive patients had a significantly smaller surface in the left superior temporal pole, Heschl's gyrus and insula compared to controls.ConclusionsOur findings suggest that brain volume loss is present at illness onset, and can be explained by the reduced surface of the temporal and insular cortex. These abnormalities are not related to medication, but IQ.


PLoS ONE ◽  
2015 ◽  
Vol 10 (5) ◽  
pp. e0125112 ◽  
Author(s):  
Teemu Mäntylä ◽  
Outi Mantere ◽  
Tuukka T. Raij ◽  
Tuula Kieseppä ◽  
Hanna Laitinen ◽  
...  

2014 ◽  
Vol 76 (2) ◽  
pp. 138-145 ◽  
Author(s):  
David J. Bond ◽  
Tae Hyon Ha ◽  
Donna J. Lang ◽  
Wayne Su ◽  
Ivan J. Torres ◽  
...  

2021 ◽  
Vol 8 (4) ◽  
pp. e998
Author(s):  
Claudia Sestito ◽  
Cyra E. Leurs ◽  
Martijn D. Steenwijk ◽  
John J.P. Brevé ◽  
Jos W.R. Twisk ◽  
...  

ObjectiveThe clinical course of multiple sclerosis (MS) is variable and largely unpredictable pointing to an urgent need for markers to monitor disease activity and progression. Recent evidence revealed that tissue transglutaminase (TG2) is altered in patient-derived monocytes. We hypothesize that blood cell–derived TG2 messenger RNA (mRNA) can potentially be used as biomarker in patients with MS.MethodsIn peripheral blood mononuclear cells (PBMCs) from 151 healthy controls and 161 patients with MS, TG2 mRNA was measured and correlated with clinical and MRI parameters of disease activity (annualized relapse rate, gadolinium-enhanced lesions, and T2 lesion volume) and disease progression (Expanded Disability Status Scale [EDSS], normalized brain volume, and hypointense T1 lesion volume).ResultsPBMC-derived TG2 mRNA levels were significantly associated with disease progression, i.e., worsening of the EDSS over 2 years of follow-up, normalized brain volume, and normalized gray and white matter volume in the total MS patient group at baseline. Of these, in patients with relapsing-remitting MS, TG2 expression was significantly associated with worsening of the EDSS scores over 2 years of follow-up. In the patients with primary progressive (PP) MS, TG2 mRNA levels were significantly associated with EDSS, normalized brain volume, and normalized gray and white matter volume at baseline. In addition, TG2 mRNA associated with T1 hypointense lesion volume in the patients with PP MS at baseline.ConclusionPBMC-derived TG2 mRNA levels hold promise as biomarker for disease progression in patients with MS.Classification of EvidenceThis study provides Class II evidence that in patients with MS, PBMC-derived TG2 mRNA levels are associated with disease progression.


2018 ◽  
Vol 48 (3) ◽  
pp. 1201-1214 ◽  
Author(s):  
Fabienne Harrisberger ◽  
Renata Smieskova ◽  
Tobias Egli ◽  
Andor E. Simon ◽  
Anita Riecher-Rössler ◽  
...  

Background: Reductions in the volume of brain white matter are a common feature in schizophrenia and bipolar disorder while the association between white matter and polygenic schizophrenia-related risk is unclear. To look at the intermediate state between health and the full-blown disorder, we investigated this aspect in groups of patients before and after the onset of psychosis. Methods: On a 3 Tesla scanner, total and regional white matter volumes were investigated by structural magnetic resonance imaging (MRI) in the following groups: 37 at-risk mental state patients (ARMS), including 30 with no transition to psychosis (ARMS-NT) and 7 with a transition to psychosis (ARMS-T) pooled with 25 first episode psychosis (FEP) patients. These T1-weighted images were automatically processed with the FreeSurfer software and compared with an odds-ratio-weighted polygenic schizophrenia-related risk score (PSRS) based on the publicly available top white matter single-nucleotide polymorphisms. Results: We found no association, only a trend, between PSRS and white matter volume over all groups (β = 0.24, p = 0.07, 95% confidence interval = [-0.02 – 0.49]). However, a higher PSRS was significantly associated with a higher probability of being assigned to the ARMS-T + FEP group rather than to the ARMS-NT group (β = 0.70, p = 0.02, 95% confidence interval = [0.14 – 1.33]); there was no such association with white matter volume. Additionally, a positive association was found between PSRS and the Brief Psychiatric Rating Scale (BPRS) total score for the pooled ARMS-NT/ARMS-T+FEP sample and for the ARMS-T + FEP group also, but none for the ARMS-NT group only. Conclusion: These findings suggest that at-risk mental state patients with a transition and first-episode psychosis patients have a higher genetic risk for schizophrenia than at-risk mental state patients with no transition to psychosis; this risk was associated with psychopathological symptoms. Further analyses may allow polygenic schizophrenia-related risk scores to be used as biomarkers to predict psychosis.


Sign in / Sign up

Export Citation Format

Share Document