scholarly journals Optimizing PK properties of cyclic peptides: the effect of side chain substitutions on permeability and clearance

MedChemComm ◽  
2012 ◽  
Vol 3 (10) ◽  
pp. 1282-1289 ◽  
Author(s):  
Arthur C. Rand ◽  
Siegfried S. F. Leung ◽  
Heather Eng ◽  
Charles J. Rotter ◽  
Raman Sharma ◽  
...  

The impact of side chain functionality on the pharmacokinetics of an orally bioavailable cyclic peptide scaffold is investigated.

2022 ◽  
Author(s):  
Jaru Taechalertpaisarn ◽  
Satoshi Ono ◽  
Okimasa Okada ◽  
Timothy C. Johnstone ◽  
R. Scott Lokey

Despite the notoriously poor membrane permeability of peptides in general, many cyclic peptide natural products show high passive membrane permeability and potently inhibit a variety of “undruggable” intracellular targets. A major impediment to designing cyclic peptides with good permeability is the high desolvation energy associated with the peptide backbone amide NH groups. Strategies for mitigating the deleterious effect of the backbone NH group on permeability include N-methylation, steric occlusion, and the formation of intramolecular hydrogen bonds with backbone carbonyl oxygens, while there have been relatively few studies on the use of polar side chains to sequester backbone NH groups. We investigated the ability of N,N-pyrrolidinyl glutamine (Pye), whose side chain contains a powerful hydrogen bond accepting C=O amide group but no hydrogen bond donors, to sequester exposed backbone NH groups in a series of cyclic hexapeptide diastereomers. Analyses of partition coefficients, lipophilic permeability efficiencies (LPE), artificial and cell-based permeability assays revealed that specific Leu-to-Pye substitutions conferred dramatic improvements in aqueous solubility and permeability in a scaffold- and position-dependent manner. Introduction of the Pye residue thus offers a complementary tool, alongside traditional approaches, for improving membrane permeability and solubility in cyclic peptides.


Molecules ◽  
2019 ◽  
Vol 24 (3) ◽  
pp. 424
Author(s):  
Di Chen ◽  
Lingling Yan ◽  
Weiping Zheng

In the current study, four side chain-to-side chain cyclic peptides (three 5-mers and one 4-mer) harboring Nε-acetyl-lysine or Nε-myristoyl-lysine were found to be in vitro substrates of the human SIRT1/2/3-catalyzed deacylation with good substrate activities, as judged by the kcat/KM ratios.


2020 ◽  
Author(s):  
Salvador Guardiola ◽  
Monica Varese ◽  
Xavier Roig ◽  
Jesús Garcia ◽  
Ernest Giralt

<p>NOTE: This preprint has been retracted by consensus from all authors. See the retraction notice in place above; the original text can be found under "Version 1", accessible from the version selector above.</p><p><br></p><p>------------------------------------------------------------------------</p><p><br></p><p>Peptides, together with antibodies, are among the most potent biochemical tools to modulate challenging protein-protein interactions. However, current structure-based methods are largely limited to natural peptides and are not suitable for designing target-specific binders with improved pharmaceutical properties, such as macrocyclic peptides. Here we report a general framework that leverages the computational power of Rosetta for large-scale backbone sampling and energy scoring, followed by side-chain composition, to design heterochiral cyclic peptides that bind to a protein surface of interest. To showcase the applicability of our approach, we identified two peptides (PD-<i>i</i>3 and PD-<i>i</i>6) that target PD-1, a key immune checkpoint, and work as protein ligand decoys. A comprehensive biophysical evaluation confirmed their binding mechanism to PD-1 and their inhibitory effect on the PD-1/PD-L1 interaction. Finally, elucidation of their solution structures by NMR served as validation of our <i>de novo </i>design approach. We anticipate that our results will provide a general framework for designing target-specific drug-like peptides.<i></i></p>


2020 ◽  
Vol 22 (1) ◽  
pp. 155
Author(s):  
Mikhail V. Diachkov ◽  
Karoll Ferrer ◽  
Jana Oklestkova ◽  
Lucie Rarova ◽  
Vaclav Bazgier ◽  
...  

Brassinosteroids are a class of plant hormones that regulate a broad range of physiological processes such as plant growth, development and immunity, including the suppression of biotic and abiotic stresses. In this paper, we report the synthesis of new brassinosteroid analogues with a nitrogen-containing side chain and their biological activity on Arabidopis thaliana. Based on molecular docking experiments, two groups of brassinosteroid analogues were prepared with short and long side chains in order to study the impact of side chain length on plants. The derivatives with a short side chain were prepared with amide, amine and ammonium functional groups. The derivatives with a long side chain were synthesized using amide and ammonium functional groups. A total of 25 new brassinosteroid analogues were prepared. All 25 compounds were tested in an Arabidopsis root sensitivity bioassay and cytotoxicity screening. The synthesized substances showed no significant inhibitory activity compared to natural 24-epibrassinolide. In contrast, in low concentration, several compounds (8a, 8b, 8e, 16e, 22a and 22e) showed interesting growth-promoting activity. The cytotoxicity assay showed no toxicity of the prepared compounds on cancer and normal cell lines.


Marine Drugs ◽  
2021 ◽  
Vol 19 (6) ◽  
pp. 311
Author(s):  
Yang Li ◽  
Wang Li ◽  
Zhengshuang Xu

Peptides have a three-dimensional configuration that can adopt particular conformations for binding to proteins, which are well suited to interact with larger contact surface areas on target proteins. However, low cell permeability is a major challenge in the development of peptide-related drugs. In recent years, backbone N-methylation has been a useful tool for manipulating the permeability of cyclic peptides/peptidomimetics. Backbone N-methylation permits the adjustment of molecule’s conformational space. Several pathways are involved in the drug absorption pathway; the relative importance of each N-methylation to total permeation is likely to differ with intrinsic properties of cyclic peptide/peptidomimetic. Recent studies on the permeability of cyclic peptides/peptidomimetics using the backbone N-methylation strategy and synthetic methodologies will be presented in this review.


2015 ◽  
Vol 59 (4) ◽  
pp. 2113-2121 ◽  
Author(s):  
U. Malik ◽  
O. N. Silva ◽  
I. C. M. Fensterseifer ◽  
L. Y. Chan ◽  
R. J. Clark ◽  
...  

ABSTRACTStaphylococcus aureusis a virulent pathogen that is responsible for a wide range of superficial and invasive infections. Its resistance to existing antimicrobial drugs is a global problem, and the development of novel antimicrobial agents is crucial. Antimicrobial peptides from natural resources offer potential as new treatments against staphylococcal infections. In the current study, we have examined the antimicrobial properties of peptides isolated from anuran skin secretions and cyclized synthetic analogues of these peptides. The structures of the peptides were elucidated by nuclear magnetic resonance (NMR) spectroscopy, revealing high structural and sequence similarity with each other and with sunflower trypsin inhibitor 1 (SFTI-1). SFTI-1 is an ultrastable cyclic peptide isolated from sunflower seeds that has subnanomolar trypsin inhibitory activity, and this scaffold offers pharmaceutically relevant characteristics. The five anuran peptides were nonhemolytic and noncytotoxic and had trypsin inhibitory activities similar to that of SFTI-1. They demonstrated weakin vitroinhibitory activities againstS. aureus, but several had strong antibacterial activities againstS. aureusin anin vivomurine wound infection model. pYR, an immunomodulatory peptide fromRana sevosa, was the most potent, with complete bacterial clearance at 3 mg · kg−1. Cyclization of the peptides improved their stability but was associated with a concomitant decrease in antimicrobial activity. In summary, these anuran peptides are promising as novel therapeutic agents for treating infections from a clinically resistant pathogen.


2021 ◽  
Vol 7 (3) ◽  
pp. 204
Author(s):  
Shengwen Zhou ◽  
Xincan Li ◽  
Yunjiao Lüli ◽  
Xuan Li ◽  
Zuo H. Chen ◽  
...  

Most species in the genus Amanita are ectomycorrhizal fungi comprising both edible and poisonous mushrooms. Some species produce potent cyclic peptide toxins, such as α-amanitin, which places them among the deadliest organisms known to mankind. These toxins and related cyclic peptides are encoded by genes of the “MSDIN” family (named after the first five amino acid residues of the precursor peptides), and it is largely unknown to what extent these genes are expressed in the basidiocarps. In the present study, Amanita rimosa and Amanita exitialis were sequenced through the PacBio and Illumina techniques. Together with our two previously sequenced genomes, Amanita subjunquillea and Amanita pallidorosea, in total, 46 previously unknown MSDIN genes were discovered. The expression of over 80% of the MSDIN genes was demonstrated in A. subjunquillea. Through a combination of genomics and mass spectrometry, 12 MSDIN genes were shown to produce novel cyclic peptides. To further confirm the results, three of the cyclic peptides were chemically synthesized. The tandem mass spectrometry (MS/MS) spectra of the natural and the synthetic peptides shared a majority of the fragment ions, demonstrating an identical structure between each peptide pair. Collectively, the results suggested that the genome-guided approach is reliable for identifying novel cyclic peptides in Amanita species and that there is a large peptide reservoir in these mushrooms.


Biomedicines ◽  
2018 ◽  
Vol 6 (4) ◽  
pp. 99 ◽  
Author(s):  
Klaas Decoene ◽  
Willem Vannecke ◽  
Toby Passioura ◽  
Hiroaki Suga ◽  
Annemieke Madder

Flexible in vitro translation (FIT) was used as a screening method to uncover a new methodology for peptide constraining based on the attack of a nucleophilic side-chain functionality onto an oxidized furylalanine side chain. A set of template peptides, each containing furylalanine as furan-modified amino acid and a nucleophilic residue (Cys, His, Lys, Arg, Ser, or Tyr), was produced through FIT. The translation mixtures were treated with N-bromosuccinimide (NBS) to achieve selective furan oxidation and subsequent MALDI analysis demonstrated Lys and Ser as promising residues for cyclisation. Solid-phase peptide synthesis (SPPS) was used to synthesize suitable amounts of material for further in-depth analysis and characterisation. It was found that in the case of the peptide containing lysine next to a furylalanine residue, a one-pot oxidation and reduction reaction leads to the generation of a cyclic peptide featuring a pyrrole moiety as cyclisation motif, resulting from the attack of the lysine side chain onto the oxidized furylalanine side chain. Structural evidence was provided via NMR and the generality of the methodology was explored. We hereby expand the scope of our previously developed furan-based peptide labeling and crosslinking strategy.


Molecules ◽  
2018 ◽  
Vol 23 (9) ◽  
pp. 2217 ◽  
Author(s):  
Ryota Kirikoshi ◽  
Noriyoshi Manabe ◽  
Ohgi Takahashi

Spontaneous deamidation in the Asn-Gly-Arg (NGR) motif that yields an isoAsp-Gly-Arg (isoDGR) sequence has recently attracted considerable attention because of the possibility of application to dual tumor targeting. It is well known that Asn deamidation reactions in peptide chains occur via the five-membered ring succinimide intermediate. Recently, we computationally showed by the B3LYP density functional theory method, that inorganic phosphate and the Arg side chain can catalyze the NGR deamidation using a cyclic peptide, c[CH2CO–NGRC]–NH2. In this previous study, the tetrahedral intermediate of the succinimide formation was assumed to be readily protonated at the nitrogen originating from the Asn side chain by the solvent water before the release of an NH3 molecule. In the present study, we found a new mechanism for the decomposition of the tetrahedral intermediate that does not require the protonation by an external proton source. The computational method is the same as in the previous study. In the new mechanism, the release of an NH3 molecule occurs after a proton exchange between the peptide and the phosphate and conformational changes. The rate-determining step of the overall reaction course is the previously reported first step, i.e., the cyclization to form the tetrahedral intermediate.


Sign in / Sign up

Export Citation Format

Share Document