scholarly journals Large scale production of novel g-C3N4 micro strings with high surface area and versatile photodegradation ability

CrystEngComm ◽  
2014 ◽  
Vol 16 (9) ◽  
pp. 1825 ◽  
Author(s):  
Muhammad Tahir ◽  
Chuanbao Cao ◽  
Faheem K. Butt ◽  
Sajid Butt ◽  
Faryal Idrees ◽  
...  
RSC Advances ◽  
2020 ◽  
Vol 10 (34) ◽  
pp. 20118-20128 ◽  
Author(s):  
Mahsa Asadniaye Fardjahromi ◽  
Amir Razmjou ◽  
Graham Vesey ◽  
Fatemeh Ejeian ◽  
Balarka Banerjee ◽  
...  

Mussel inspired ZIF8 microcarriers with high surface area, biocompatibility, and nanoscale surface roughness are applied to enhance mesenchymal stem cell attachment and proliferation in 3D cell culture.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Aline M. Barreiro ◽  
Geneviève K. Pinheiro ◽  
Bruno N. Wesling ◽  
Daliana Müller ◽  
Letícia T. Scarabelot ◽  
...  

Inkjet printing presents a high potential for cost reduction of electronic devices manufacturing due to the capacity to deposit materials with high precision, less material waste, and large-scale production through the roll-to-roll printing processes. In this work, a nanostructured TiO2 ink was developed using TiO2 aerogel and an alkaline aqueous solution, which resulted in a very stable suspension. A high-intensity ultrasonic mixer was used to fragment and disperse TiO2 aerogels producing suspensions with particles smaller than 200 nm, which are suitable for the inkjet printing process. For the development of the ink, the viscosity and surface tension were adjusted by using glycerol and a surfactant (Triton X-100). The influence of those components on the properties of the ink was evaluated for different concentrations. After formulation of the inks, the printing parameters were adjusted to optimize the process. Films with high surface area and less than 100 nm grain size were successfully produced. Electrical measurements revealed a resistive-like behavior with the sheet resistance increasing with number of printed layers.


RSC Advances ◽  
2014 ◽  
Vol 4 (85) ◽  
pp. 45244-45250 ◽  
Author(s):  
Yun Meng ◽  
Liyuan Zhang ◽  
Liyuan Chai ◽  
Wanting Yu ◽  
Ting Wang ◽  
...  

PmPD nanobelts with high adsorption performance have been synthesized by using CTAP as oxidants.


2020 ◽  
Vol 8 (35) ◽  
pp. 18318-18326 ◽  
Author(s):  
Hailong Peng ◽  
Yangcenzi Xie ◽  
Zicheng Xie ◽  
Yunfeng Wu ◽  
Wenkun Zhu ◽  
...  

Porous high entropy alloy CrMnFeCoNi exhibited remarkable catalytic activity and stability toward p-nitrophenol hydrogenation. The enhanced catalytic performance not only resulted from the high surface area, but also from exposed high-index facets with terraces.


2010 ◽  
Vol 1256 ◽  
Author(s):  
Girija Shankar Chaubey ◽  
Yuan Yao ◽  
Julien Pierre Amelie Makongo Mangan ◽  
Pranati Sahoo ◽  
Pierre F. P. Poudeu ◽  
...  

AbstractA simple method is reported for the synthesis of monodispersed HfO2 nanoparticles by the ammonia catalyzed hydrolysis and condensation of hafnium (IV) tert-butoxide in the presence of surfactants at room temperature. Transmission electron microscopy shows faceted nanoparticles with an average diameter of 3-4 nm. As-synthesized nanoparticles are amorphous in nature and crystallize upon moderate heat treatment. The HfO2 nanoparticles have a narrow size distribution, large specific surface area and good thermal stability. Specific surface area was about 239 m2/g on as-prepared nanoparticle samples while those annealed at 500 °C have specific surface area of 221 m2/g indicating that there was no significant increase in particle size. This result was further confirmed by TEM images of nanoparticles annealed at 300 °C and 500 °C. X-ray diffraction studies of the crystallized nanoparticles revealed that HfO2 nanoparticles were monoclinic in structure. The synthetic procedure used in this work can be readily modified for large scale production of monodispersed HfO2 nanoparticles.


2019 ◽  
Vol 7 (11) ◽  
pp. 4720-4729
Author(s):  
Yao-Chen Chuang ◽  
Yu Hsia ◽  
Chia-Hui Chu ◽  
Li-Jie Lin ◽  
Maharajan Sivasubramanian ◽  
...  

Herein, we report a new type of biodegradable, high surface-area gold nanodandelions (GNDs) as potential radiotheranostics.


Author(s):  
Bhupesh Chandra ◽  
Joshua T. Kace ◽  
Yuhao Sun ◽  
S. C. Barton ◽  
James Hone

In recent years carbon nanotubes have emerged as excellent materials for applications in which high surface area is required e.g. gas sensing, hydrogen storage, solar cells etc. Ultra-high surface to volume ratio is also a desirable property in the applications requiring enhanced catalytic activity where these high surface area materials can act as catalyst supports. One of the fastest developing areas needing such materials is fuel-cell. Here we investigate the process through which carbon nanotubes can be manufactured specifically to be used to increase the surface area of a carbon paper (Toray™). This carbon support is used in bio-catalytic fuel cell as an electrode to support enzyme which catalyzes the redox reaction. Deposition of nanotubes on these carbon fibers can result in great enhancement in the overall surface area to support the enzyme, which increases the reaction rate inside the fuel cell. The present paper describes a method to achieve ultra-thick growth of multiwall carbon nanotubes (MWNT) on a carbon Toray™ paper using a joule heating process and gas-phase catalyst. Using this method, we are able to achieve rapid, high-density, and uniform MWNT growth. This method is also potentially scalable toward larger-scale production.


2017 ◽  
Vol 192 (11) ◽  
pp. 1159-1164 ◽  
Author(s):  
Tingting Song ◽  
Yan Shi ◽  
Zhiwei Yao ◽  
Haifeng Gao ◽  
Feixue Liang ◽  
...  

2017 ◽  
Vol 19 (31) ◽  
pp. 21024-21032 ◽  
Author(s):  
Sunil Kumar ◽  
Suchandan K. Das

Nanoporous aluminium has great importance for large scale production of automobile and aerospace spare parts due to its lightweight and non-corrosive nature. It is also suitable for various packaging applications of edible things, electronic components, and medicines.


Author(s):  
Sanjay Upadhyay ◽  
Om Prakash Pandey

Abstract In this review, we summarize the latest research progress on Mo2C based materials for various electrochemical applications. It starts with discussing the different synthesis methods and the tactics for modifying the physicochemical characteristics of Mo2C. In addition, the variables that influence the morphology and electrochemical performance of Mo2C have been explored. The synthesis methods are examined based on their tricks, benefits, and drawbacks, including solid-gas, solid-solid, solid-liquid, and some other processes (chemical vapor deposition, Sonochemical, microwave-assisted, plasma, etc.). Methods that are safe, cost-effective, environmentally friendly, and suited for large-scale production of Mo2C are given special consideration. The solid-solid reaction is found to be a facile and cost-effective method to synthesize Mo2C structures having high surface area and small particle size. Also, the various electrochemical applications of Mo2C are reviewed. Mo2C is an extremely active and durable electrocatalyst mainly for hydrogen evolution reaction (HER). The electrochemical parameters such as activity, stability, etc., are examined and described in detail. The possible ways to improve the electrochemical performance of Mo2C are discussed. Finally, the difficulties in developing Mo2C nanostructures that are suited for energy storage and conversion applications are discussed.


Sign in / Sign up

Export Citation Format

Share Document