Choline phosphate functionalized surface: protein-resistant but cell-adhesive zwitterionic surface potential for tissue engineering

2015 ◽  
Vol 51 (3) ◽  
pp. 487-490 ◽  
Author(s):  
Xingyu Chen ◽  
Tianchan Chen ◽  
Zaifu Lin ◽  
Xian'e Li ◽  
Wei Wu ◽  
...  

A choline phosphate (CP) modified zwitterionic surface is prepared with both protein-resistant and cell-adhesive properties, exhibiting great potential for biomedical applications such as tissue engineering.

RSC Advances ◽  
2015 ◽  
Vol 5 (93) ◽  
pp. 76216-76220 ◽  
Author(s):  
Xingyu Chen ◽  
Hui Shang ◽  
Shuqin Cao ◽  
Hong Tan ◽  
Jianshu Li

A choline phosphate functionalized surface is proved to have general cell-adhesive and protein-resistant properties, which give it potential for biomaterials.


2020 ◽  
Vol 21 (18) ◽  
pp. 6544 ◽  
Author(s):  
Neha Kaushik ◽  
Linh Nhat Nguyen ◽  
June Hyun Kim ◽  
Eun Ha Choi ◽  
Nagendra Kumar Kaushik

In the field of tissue engineering, there are several issues to consider when designing biomaterials for implants, including cellular interaction, good biocompatibility, and biochemical activity. Biomimetic mineralization has gained considerable attention as an emerging approach for the synthesis of biocompatible materials with complex shapes, categorized organization, controlled shape, and size in aqueous environments. Understanding biomineralization strategies could enhance opportunities for novel biomimetic mineralization approaches. In this regard, mussel-inspired biomaterials have recently attracted many researchers due to appealing features, such as strong adhesive properties on moist surfaces, improved cell adhesion, and immobilization of bioactive molecules via catechol chemistry. This molecular designed approach has been a key point in combining new functionalities into accessible biomaterials for biomedical applications. Polydopamine (PDA) has emerged as a promising material for biomaterial functionalization, considering its simple molecular structure, independence of target materials, cell interactions for adhesion, and robust reactivity for resulting functionalization. In this review, we highlight the strategies for using PDA to induce the biomineralization of hydroxyapatite (HA) on the surface of various implant materials with good mechanical strength and corrosion resistance. We also discuss the interactions between the PDA-HA coating, and several cell types that are intricate in many biomedical applications, involving bone defect repair, bone regeneration, cell attachment, and antibacterial activity.


2019 ◽  
Vol 26 (38) ◽  
pp. 6834-6850 ◽  
Author(s):  
Mohammad Omaish Ansari ◽  
Kalamegam Gauthaman ◽  
Abdurahman Essa ◽  
Sidi A. Bencherif ◽  
Adnan Memic

: Nanobiotechnology has huge potential in the field of regenerative medicine. One of the main drivers has been the development of novel nanomaterials. One developing class of materials is graphene and its derivatives recognized for their novel properties present on the nanoscale. In particular, graphene and graphene-based nanomaterials have been shown to have excellent electrical, mechanical, optical and thermal properties. Due to these unique properties coupled with the ability to tune their biocompatibility, these nanomaterials have been propelled for various applications. Most recently, these two-dimensional nanomaterials have been widely recognized for their utility in biomedical research. In this review, a brief overview of the strategies to synthesize graphene and its derivatives are discussed. Next, the biocompatibility profile of these nanomaterials as a precursor to their biomedical application is reviewed. Finally, recent applications of graphene-based nanomaterials in various biomedical fields including tissue engineering, drug and gene delivery, biosensing and bioimaging as well as other biorelated studies are highlighted.


2021 ◽  
Author(s):  
Marissa Morales-Moctezuma ◽  
Sebastian G Spain

Nanogels have emerged as innovative platforms for numerous biomedical applications including gene and drug delivery, biosensors, imaging, and tissue engineering. Polymerisation-induced thermal self-assembly (PITSA) has been shown to be suitable...


Materials ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1269
Author(s):  
Gareth Sheppard ◽  
Karl Tassenberg ◽  
Bogdan Nenchev ◽  
Joel Strickland ◽  
Ramy Mesalam ◽  
...  

In tissue engineering, scaffolds are a key component that possess a highly elaborate pore structure. Careful characterisation of such porous structures enables the prediction of a variety of large-scale biological responses. In this work, a rapid, efficient, and accurate methodology for 2D bulk porous structure analysis is proposed. The algorithm, “GAKTpore”, creates a morphology map allowing quantification and visualisation of spatial feature variation. The software achieves 99.6% and 99.1% mean accuracy for pore diameter and shape factor identification, respectively. There are two main algorithm novelties within this work: (1) feature-dependant homogeneity map; (2) a new waviness function providing insights into the convexity/concavity of pores, important for understanding the influence on cell adhesion and proliferation. The algorithm is applied to foam structures, providing a full characterisation of a 10 mm diameter SEM micrograph (14,784 × 14,915 px) with 190,249 pores in ~9 min and has elucidated new insights into collagen scaffold formation by relating microstructural formation to the bulk formation environment. This novel porosity characterisation algorithm demonstrates its versatility, where accuracy, repeatability, and time are paramount. Thus, GAKTpore offers enormous potential to optimise and enhance scaffolds within tissue engineering.


Gels ◽  
2021 ◽  
Vol 7 (2) ◽  
pp. 58
Author(s):  
Traian V. Chirila

Fibroin is a fibrous protein that can be conveniently isolated from the silk cocoons produced by the larvae of Bombyx mori silk moth. In its form as a hydrogel, Bombyx mori silk fibroin (BMSF) has been employed in a variety of biomedical applications. When used as substrates for biomaterial-cells constructs in tissue engineering, the oxygen transport characteristics of the BMSF membranes have proved so far to be adequate. However, over the past three decades the BMSF hydrogels have been proposed episodically as materials for the manufacture of contact lenses, an application that depends on substantially elevated oxygen permeability. This review will show that the literature published on the oxygen permeability of BMSF is both limited and controversial. Additionally, there is no evidence that contact lenses made from BMSF have ever reached commercialization. The existing literature is discussed critically, leading to the conclusion that BMSF hydrogels are unsuitable as materials for contact lenses, while also attempting to explain the scarcity of data regarding the oxygen permeability of BMSF. To the author’s knowledge, this review covers all publications related to the topic.


Biomaterials ◽  
2015 ◽  
Vol 54 ◽  
pp. 44-54 ◽  
Author(s):  
Indong Jun ◽  
Yu Bin Lee ◽  
Yu Suk Choi ◽  
Adam J. Engler ◽  
Hansoo Park ◽  
...  

2021 ◽  
Author(s):  
Tudor Vasiliu ◽  
Bogdan Florin Florin Craciun ◽  
Andrei Neamtu ◽  
Lilia Clima ◽  
Dragos Lucian Isac ◽  
...  

The biocompatible hydrophilic polyethylene glycol (PEG) is widely used in biomedical applications, such as drug or gene delivery, tissue engineering or as antifouling in biomedical devices. Experimental studies have shown...


2011 ◽  
Vol 208 (2) ◽  
pp. 341-356 ◽  
Author(s):  
Alida Coppi ◽  
Ramya Natarajan ◽  
Gabriele Pradel ◽  
Brandy L. Bennett ◽  
Eric R. James ◽  
...  

Plasmodium sporozoites make a remarkable journey from the mosquito midgut to the mammalian liver. The sporozoite’s major surface protein, circumsporozoite protein (CSP), is a multifunctional protein required for sporozoite development and likely mediates several steps of this journey. In this study, we show that CSP has two conformational states, an adhesive conformation in which the C-terminal cell-adhesive domain is exposed and a nonadhesive conformation in which the N terminus masks this domain. We demonstrate that the cell-adhesive domain functions in sporozoite development and hepatocyte invasion. Between these two events, the sporozoite must travel from the mosquito midgut to the mammalian liver, and N-terminal masking of the cell-adhesive domain maintains the sporozoite in a migratory state. In the mammalian host, proteolytic cleavage of CSP regulates the switch to an adhesive conformation, and the highly conserved region I plays a critical role in this process. If the CSP domain architecture is altered such that the cell-adhesive domain is constitutively exposed, the majority of sporozoites do not reach their target organs, and in the mammalian host, they initiate a blood stage infection directly from the inoculation site. These data provide structure–function information relevant to malaria vaccine development.


Sign in / Sign up

Export Citation Format

Share Document