scholarly journals Double-layered hyaluronic acid/stearic acid-modified polyethyleneimine nanoparticles encapsulating (−)-gossypol: a nanocarrier for chiral anticancer drugs

2014 ◽  
Vol 2 (32) ◽  
pp. 5238-5248 ◽  
Author(s):  
Hao Liu ◽  
Ke Li ◽  
Lan Lan ◽  
Jingwen Ma ◽  
Yun Zeng ◽  
...  

The double-layered nanoparticles encapsulating the chiral drug (−)-gossypol possess tumor-targeting ability, a sustained release profile, and evident tumor-inhibition effects.

Author(s):  
Ranwei Li ◽  
Tiecheng Liu ◽  
Ke Wang

AbstractNovel tumor-targeting zirconium phosphate (ZP) nanoparticles modified with hyaluronic acid (HA) were developed (HA-ZP), with the aim of combining the drug-loading property of ZP and the tumor-targeting ability of HA to construct a tumor-targeting paclitaxel (PTX) delivery system for potential lung cancer therapy. The experimental results indicated that PTX loading into the HA-ZP nanoparticles was as high as 20.36%±4.37%, which is favorable for cancer therapy. PTX-loaded HA-ZP nanoparticles increased the accumulation of PTX in A549 lung cancer cells via HA-mediated endocytosis and exhibited superior anticancer activity


2021 ◽  
Author(s):  
Chao Wang ◽  
Beilei Wang ◽  
Shuaijun Zou ◽  
Bo Wang ◽  
Guoyan Liu ◽  
...  

Nanodrug delivery systems have been used extensively to improve the tumor-targeting ability and reduce the side effects of anticancer drugs. In this study, nanomicelles responsive to dual stimuli were designed...


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Enling Liu ◽  
Yuxiu Zhou ◽  
Zheng Liu ◽  
Jun Li ◽  
Donghong Zhang ◽  
...  

Novel tumor-targeting titanium dioxide (TiO2) nanoparticles modified with hyaluronic acid (HA) were developed to explore the feasibility of exploiting the pH-responsive drug release property ofTiO2and the tumor-targeting ability of HA to construct a tumor-targeting cisplatin (CDDP) delivery system (HA-TiO2) for potential neoadjuvant chemotherapy of ovarian cancer. The experimental results indicated that CDDP release from the HA-TiO2nanoparticles was significantly accelerated by decreasing pH from 7.4 to 5.0, which is of particular benefit to cancer therapy. CDDP-loaded HA-TiO2nanoparticles increased the accumulation of CDDP in A2780 ovarian cancer cells via HA-mediated endocytosis and exhibited superior anticancer activityin vitro.In vivoreal-time imaging assay revealed that HA-TiO2nanoparticles possessed preferable tumor-targeting ability which might potentially minimize the toxic side effects of CDDP in clinical application.


Nanomaterials ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. 486
Author(s):  
Abdelrahman I. Rezk ◽  
Jeesoo Park ◽  
Joon Yeon Moon ◽  
Sunny Lee ◽  
Chan Hee Park ◽  
...  

Here, we developed a novel biliary stent coating material that is composed of tri-layer membrane with dual function of sustained release of paclitaxel (PTX) anticancer drug and antibacterial effect. The advantages of using electrospinning technique were considered for the even distribution of PTX and controlled release profile from the nanofiber mat. Furthermore, film cast method was utilized to fabricate AgNPs-immobilized PU film to direct the release towards the tumor site and suppress the biofilm formation. The in vitro antibacterial test conducted against Gram-positive (Staphylococcus aureus) and Gram-negative (Escherichia coli) bacteria species showed excellent antibacterial effect. The in vitro drug release study confirmed the sustained release of PTX from the tri-layer membrane and the release profile fitted first order with correlation coefficient of R2 = 0.98. Furthermore, the release mechanism was studied using Korsmeyer–Peppas model, revealing that the release mechanism follows Fickian diffusion. Based on the results, this novel tri-layer membrane shows curative potential in clinical development.


2016 ◽  
Vol 43 ◽  
pp. 195-207 ◽  
Author(s):  
Zhoujiang Chen ◽  
Nan He ◽  
Maohua Chen ◽  
Long Zhao ◽  
Xiaohong Li

2021 ◽  
Vol 17 (10) ◽  
pp. 2003-2013
Author(s):  
Jingxin Fu ◽  
Yian Wang ◽  
Haowen Li ◽  
Likang Lu ◽  
Hui Ao ◽  
...  

Background: The use of chemotherapeutic drugs is restricted in the tumor-therapy because of the severely toxic and side effects among most important factors. The active herbal extracts are always used as a high dose while in the tumortherapy to achieve good anti-tumor effects. Hydrous icaritin has a high activity while there are few existing dosage forms as a result of low solubility in water and poor bioavailability. Results: The prepared hydrous icaritin nanorods (DP-HICT NRs) using mPEG2000-DSPE as a stabilizer, presented a narrow distribution of particle size with of 217 nm and a properly high drug-loading content of approximately 65.3±1.5%. A low dose of hydrous icaritin nano-formulation shows remarkable efficacy in cancer therapy (tumor inhibition rate: 61.36±10.80%) compared with the same dose of Paclitaxel injection (tumor inhibition rate: 66.80±4.43%), which approved as medicaments. Not only that, DP-HICT NRs can escape the clearance of the immune system and enhance targeting ability to the tumor site with only one excipient and such a low dose. Conclusions: This kind of nanoparticles contain a low dose of HICT used mPEG2000-DSPE as a stabilizer, while can achieve good tumor targeting as some active targeting agents and an anti-tumor effect as the PTX injection. There are broad prospects in drug safety, anti-tumor efficacy and even prognosis.


2019 ◽  
Vol 9 (6) ◽  
pp. 1099-1112 ◽  
Author(s):  
Zhijian Luo ◽  
Yan Dai ◽  
Huile Gao

2021 ◽  
Author(s):  
Alifu Nuernisha ◽  
Rong Ma ◽  
Lijun Zhu ◽  
Zhong Du ◽  
Shuang Chen ◽  
...  

Abstract BackgroundNear-infrared II (NIR-II, 900-1700 nm) fluorescence bioimaging with advantages of good biosafety, excellent spatial resolution, high sensitivity and contrast, has attracted great attentions in biomedical research fields. However, most nanoprobes used for NIR-II fluorescence imaging have poor tumor-targeting ability and therapeutic efficiency. To overcome these limitations, a novel NIR-II-emissive theranostic nanoplatform for imaging and treatment of cervical cancer was designed and prepared. The NIR-II-emissive dye IR-783 and chemotherapy drug doxorubicin (DOX) were encapsulated into liposomes, and the tumor-targeting peptide TMTP1 was conjugated to the surface of the liposomes to form IR-783-DOX-TMTP1 nanoparticles (NPs) via self-assembly methods.ResultsThe IR-783-DOX-TMTP1 NPs showed strong NIR-II emission, excellent biocompatibility, a long lifetime, and low toxicity. Further, high-definition NIR-II fluorescence microscopy images of ear blood vessels and intratumor blood vessels were obtained from IR-783-DOX-TMTP1 NPs-stained mice with high spatial resolution under 808 nm laser excitation. Moreover, IR-783-DOX-TMTP1 NPs showed strong tumor targeting ability and high efficiently chemotherapeutic character towards cervical tumors. ConclusionsThe novel targeting and NIR-II-emissive IR-783-DOX-TMTP1 NPs have potential in diagnosis and therapy for cervical cancer.


Sign in / Sign up

Export Citation Format

Share Document