Gene expression of ternary complexes through the compaction of nanofiber-polyplexes by mixing with lipofectamine

2015 ◽  
Vol 3 (5) ◽  
pp. 764-770 ◽  
Author(s):  
Ryuta Aono ◽  
Kenta Nomura ◽  
Eiji Yuba ◽  
Atsushi Harada ◽  
Kenji Kono

The compaction of the nanofiber-polyplexes by mixing with cationic lipofectamine can improve cellular uptake and helps the ternary complex to retain its smooth transcription/translation process, and ternary complexes exhibit a high transfection efficiency.

2021 ◽  
Vol 15 (1) ◽  
pp. 17
Author(s):  
Soo-Yong Park ◽  
Yang H. Yun ◽  
Bum-Joon Park ◽  
Hyung-Il Seo ◽  
Ildoo Chung

Gene therapy is a suitable alternative to chemotherapy due to the complications of drug resistance and toxicity of drugs, and is also known to reduce the occurrence of cellular mutation through the use of gene carriers. In this study, gene carrier nanoparticles with minimal toxicity and high transfection efficiency were fabricated from a biocompatible and biodegradable polymer, l-tyrosine polyurethane (LTU), which was polymerized from presynthesized desaminotyrosyl tyrosine hexyl ester (DTH) and polyethylene glycol (PEG), by using double emulsion and solvent evaporation techniques, resulting in the formation of porous nanoparticles, and then used to evaluate their potential biological activities through molecular controlled release and transfection studies. To assess cellular uptake and transfection efficiency, two model drugs, fluorescently labeled bovine serum albumin (FITC-BSA) and plasmid DNA-linear polyethylenimine (LPEI) complex, were successfully encapsulated in nanoparticles, and their transfection properties and cytotoxicities were evaluated in LX2 as a normal cell and in HepG2 and MCF7 as cancer cells. The morphology and average diameter of the LTU nanoparticles were confirmed using light microscopy, transmission electron microscopy, and dynamic light scattering, while confocal microscopy was used to validate the cellular uptake of FITC-BSA-encapsulated LTU nanoparticles. Moreover, the successful cellular uptake of LTU nanoparticles encapsulated with pDNA-LPEI and the high transfection efficiency, confirmed by gel electrophoresis and X-gal assay transfection, indicated that LTU nanoparticles had excellent cell adsorption ability, facilitated gene encapsulation, and showed the sustained release tendency of genes through transfection experiments, with an optimal concentration ratio of pDNA and LPEI of 1:10. All the above characteristics are ideal for gene carriers designed to transport and release drugs into the cytoplasm, thus facilitating effective gene therapy.


2011 ◽  
Vol 2011 ◽  
pp. 1-6 ◽  
Author(s):  
Jennifer A. Fortune ◽  
Tatiana I. Novobrantseva ◽  
Alexander M. Klibanov

We mechanistically explored the effect of increased hydrophobicity of the polycation on the efficacy and specificity of gene delivery in mice. N-Alkylated linear PEIs with varying alkyl chain lengths and extent of substitution were synthesized and characterized by biophysical methods. Their in vivo transfection efficiency, specificity, and biodistribution were investigated. N-Ethylation improves the in vivo efficacy of gene expression in the mouse lung 26-fold relative to the parent polycation and more than quadruples the ratio of expression in the lung to that in all other organs. N-Propyl-PEI was the best performer in the liver and heart (581- and 3.5-fold enhancements, resp.) while N-octyl-PEI improved expression in the kidneys over the parent polymer 221-fold. As these enhancements in gene expression occur without changing the plasmid biodistribution, alkylation does not alter the cellular uptake but rather enhances transfection subsequent to cellular uptake.


2019 ◽  
Author(s):  
kaixuan Zhang ◽  
Yu Meng ◽  
Jinbo Li ◽  
Mengqi Ding ◽  
Muhammad Khurshid ◽  
...  

SummaryJasmonates (JAs) are plant hormones which regulate biosynthesis of many secondary metabolites, such as glucosinolates (GLSs), through JAs-responsive transcription factors (TFs). The JAs-responsive CYP83B1 gene, has been shown to catalyze the conversion of indole-3-acetaldoxime (IAOx) to indolic glucosinolates (IGLSs). However, little is known about the regulatory mechanism of CYP83B1 gene expression by JAs. In yeast one-hybrid screens using the CYP83B1 promoter as bait we isolated two JAs-responsive TFs ERF109 and MYB51 that are involved in JAs-regulated IGLS biosynthesis. Furthermore, using a yeast two-hybrid assay, we identified ERF109 as an interacting partner of MYB51, and Jasmonate ZIM-domain (JAZ) proteins as interactors of MYB51, and BTB/POZ-MATH (BPM) proteins as interactors of ERF109. Both JAZ and BPM proteins are necessary for the full repression of the ERF109-MYB51-MYC3 ternary complex activity on CYP83B1 gene expression and JA-regulated IGLS biosynthesis. Biochemical analysis showed that the 26S proteasome-mediated degradation of ERF109 protein is mediated by a CRL3BPM E3 ligase independently of JA signaling. Genetic and physiological evidence shows that MYB51 acts as an adaptor and activator to bridge the interaction with the co-activators MYC3 and ERF109, for synergistically activating the CYP83B1 gene expression, and all three factors are essential and exert a coordinated control in JAs-induced IGLS biosynthesis. Overall, this study provides insights into the molecular mechanisms of JAs-responsive ERF109-MYB51-MYC3 ternary complexes in controlling JAs-regulated GLSs biosynthesis, which provides a better understanding of plant secondary metabolism.One-sentence summaryThe JA-responsive ERF109-MYB51-MYC3 ternary complex controls JAs-regulated GLSs biosynthesis.


1993 ◽  
Vol 58 (5) ◽  
pp. 1103-1108 ◽  
Author(s):  
Mohamed M. Shoukry ◽  
Eman M. Shoukry

The formation constants of the binary and ternary complexes of palladium(II) with diethylenetriamine and amino acids as ligands have been determined potentiometrically at 25 °C in 0.1 M NaNO3 solution. The relative stability of each ternary complex was compared with that of the corresponding binary complexes in terms of ∆logK values. The mode of chelation was ascertained by conductivity measurements.


2011 ◽  
Vol 17 (11) ◽  
pp. 3287-3295 ◽  
Author(s):  
Widchaya Radchatawedchakoon ◽  
Aungkana Krajarng ◽  
Nattisa Niyomtham ◽  
Ramida Watanapokasin ◽  
Boon‐ek Yingyongnarongkul

ChemBioChem ◽  
2022 ◽  
Author(s):  
Chopaka Thongbamrer ◽  
Wanlapa Roobsoong ◽  
Jetsumon Sattabongkot ◽  
Praneet Opanasopit ◽  
Boon-ek Yingyongnarongkul

2020 ◽  
Vol 8 (12) ◽  
pp. 2483-2494
Author(s):  
Kun Zeng ◽  
Li Ma ◽  
Wenxiu Yang ◽  
Shan Lei ◽  
Mozhen Wang ◽  
...  

Guanidinated-fluorinated α-polylysine-modified organosilica nanoparticles can form a novel raisin-bread-like gene vector, which is disintegrated in cells by GSH to show high transfection efficiency.


Sign in / Sign up

Export Citation Format

Share Document