scholarly journals First principles thermodynamical modeling of the binodal and spinodal curves in lead chalcogenides

2016 ◽  
Vol 18 (6) ◽  
pp. 5005-5011 ◽  
Author(s):  
Demet Usanmaz ◽  
Pinku Nath ◽  
Jose J. Plata ◽  
Gus L. W. Hart ◽  
Ichiro Takeuchi ◽  
...  

High-throughput ab initio calculations, cluster expansion techniques, and thermodynamic modeling have been synergistically combined to characterize the binodal and the spinodal decompositions features in the pseudo-binary lead chalcogenides PbSe–PbTe, PbS–PbTe, and PbS–PbSe.

2018 ◽  
Vol 6 (15) ◽  
pp. 6463-6475 ◽  
Author(s):  
Sabine Körbel ◽  
Miguel A. L. Marques ◽  
Silvana Botti

By means of high-throughput first-principles calculations, we screen a large number of hypothetical hybrid perovskite compounds by stability, band gap and effective mass to find the best perovskites for photovoltaics.


2019 ◽  
Author(s):  
Mohammad Atif Faiz Afzal ◽  
Mojtaba Haghighatlari ◽  
Sai Prasad Ganesh ◽  
Chong Cheng ◽  
Johannes Hachmann

<div>We present a high-throughput computational study to identify novel polyimides (PIs) with exceptional refractive index (RI) values for use as optic or optoelectronic materials. Our study utilizes an RI prediction protocol based on a combination of first-principles and data modeling developed in previous work, which we employ on a large-scale PI candidate library generated with the ChemLG code. We deploy the virtual screening software ChemHTPS to automate the assessment of this extensive pool of PI structures in order to determine the performance potential of each candidate. This rapid and efficient approach yields a number of highly promising leads compounds. Using the data mining and machine learning program package ChemML, we analyze the top candidates with respect to prevalent structural features and feature combinations that distinguish them from less promising ones. In particular, we explore the utility of various strategies that introduce highly polarizable moieties into the PI backbone to increase its RI yield. The derived insights provide a foundation for rational and targeted design that goes beyond traditional trial-and-error searches.</div>


Nanoscale ◽  
2020 ◽  
Author(s):  
Shashikant Kumar ◽  
David Codony ◽  
Irene Arias ◽  
Phanish Suryanarayana

We study the flexoelectric effect in fifty-four select atomic monolayers using ab initio Density Functional Theory (DFT). Specifically, considering representative materials from each of Group III monochalcogenides, transition metal dichalcogenides...


2001 ◽  
Vol 706 ◽  
Author(s):  
Vincent Meunier ◽  
Jeremy Kephart ◽  
Christopher Roland ◽  
Jerry Bernholc

AbstractCarbon nanotube systems can substantially increase their capacity for Li ion uptake, provided that the nanotube interiors become accessible to the ions. We examine theoretically, with ab initio simulations, the ability of Li ions to enter a nanotube interior. While our calculations show that it is quite unlikely for the ions to pass through pristine nanotubes, they are much more likely to enter via large-sized topological defects consisting of at least 9- or more membered rings. It is unlikely that such defects are formed spontaneously, but it may be possible to induce such topological defects by violent non-equilibrium means such as ball milling, chemical means and/or ion bombardment. Indeed, recent experiments on ball milled nanotube samples do report an important increase in the Li ion uptake.


2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Eric Paquet ◽  
Herna L. Viktor

Ab initio molecular dynamics is an irreplaceable technique for the realistic simulation of complex molecular systems and processes from first principles. This paper proposes a comprehensive and self-contained review of ab initio molecular dynamics from a computational perspective and from first principles. Quantum mechanics is presented from a molecular dynamics perspective. Various approximations and formulations are proposed, including the Ehrenfest, Born–Oppenheimer, and Hartree–Fock molecular dynamics. Subsequently, the Kohn–Sham formulation of molecular dynamics is introduced as well as the afferent concept of density functional. As a result, Car–Parrinello molecular dynamics is discussed, together with its extension to isothermal and isobaric processes. Car–Parrinello molecular dynamics is then reformulated in terms of path integrals. Finally, some implementation issues are analysed, namely, the pseudopotential, the orbital functional basis, and hybrid molecular dynamics.


ChemInform ◽  
2014 ◽  
Vol 45 (48) ◽  
pp. no-no
Author(s):  
Tomofumi Tada ◽  
Seiji Takemoto ◽  
Satoru Matsuishi ◽  
Hideo Hosono

Sign in / Sign up

Export Citation Format

Share Document