Characterization of the antioxidant fraction of Trapa japonica pericarp and its hepatic protective effects in vitro and in vivo

2016 ◽  
Vol 7 (3) ◽  
pp. 1689-1699 ◽  
Author(s):  
Yon-Suk Kim ◽  
Eun-Kyung Kim ◽  
Jin-Woo Hwang ◽  
Il-Bok Seo ◽  
Jae-Hyuk Jang ◽  
...  

The ethanolic extract of Trapa japonica pericarp (TJP) and its various fractions were evaluated for their antioxidant potential.

Author(s):  
Aymen Owais Ghauri ◽  
Saeed Ahmad ◽  
Tayyeba Rehman

AbstractBackgroundDiabetes is the one of the leading cause of morbidity and mortality. Traditionally phytotherapy is widely being used for diabetes treatment and highly valued. Citrus colocynthis has known anti-diabetic potential. However, anti-diabetic potential of hydro-ethanolic extract of C. colocynthis pulpy flesh with seeds is not reported yet.MethodsThe extract of C. colocynthis pulpy flesh with seeds was done by maceration method using 70% ethanol. To evaluate anti-diabetic and antioxidant potential of the seeded fruit in vitro, α-glucosidase and DPPH inhibition assays was done, respectively. In vivo study used streptozotocin (STZ) induced diabetes model of rats. Rats were randomized in five groups i. e. normal control, negative control, standard control, C. colocynthis 150 and 300 mg/kg. STZ was administered to all groups except normal control. After wards, plant extract and glibenclamide is continued for 14 days. Blood samples were collected from rat tail vein daily and from Cardiac puncture at the end of study. The blood glucose levels were monitored daily by using one-touch blood glucose monitoring system. The blood glucose level was monitored on 0, 1st, 5th, 8th, 11th, and 14th day of induction.ResultsHydro-ethanolic extract of C. colocynthis pulpy flesh with seeds was able to decolorize DPPH and therefore possess antioxidant potential, continuous administration for 14 days showed a marked decrease in serum glucose levels (p 0.01) it is found to be somewhat less effective as glibenclamide (standard control) (p 0.001). A time-dependent decrease in blood glucose levels was observed (351.3 ± 4 to 258 m/kg).ConclusionHydro-ethanolic extract of C. colocynthis pulpy flesh with seeds lowered the serum triglyceride and cholesterol levels in diabetic rats significantly as compared to negative control. The hypoglycemic effect of hydro-ethanolic extract of C. colocynthis pulpy flesh with seeds is may be due to α-glucosidase inhibition potential.


2017 ◽  
Vol 31 (1) ◽  
pp. 52-70 ◽  
Author(s):  
Anthony Fardet ◽  
Edmond Rock

AbstractThe antioxidant potential (AP) is an important nutritional property of foods, as increased oxidative stress is involved in most diet-related chronic diseases. In dairy products, the protein fraction contains antioxidant activity, especially casein. Other antioxidants include: antioxidant enzymes; lactoferrin; conjugated linoleic acid; coenzyme Q10; vitamins C, E, A and D3; equol; uric acid; carotenoids; and mineral activators of antioxidant enzymes. The AP of dairy products has been extensively studied in vitro, with few studies in animals and human subjects. Available in vivo studies greatly differ in their design and objectives. Overall, on a 100 g fresh weight-basis, AP of dairy products is close to that of grain-based foods and vegetable or fruit juices. Among dairy products, cheeses present the highest AP due to their higher protein content. AP of milk increases during digestion by up to 2·5 times because of released antioxidant peptides. AP of casein is linked to specific amino acids, whereas β-lactoglobulin thiol groups play a major role in the AP of whey. Thermal treatments such as ultra-high temperature processing have no clear effect on the AP of milk. Raw fat-rich milks have higher AP than less fat-rich milk, because of lipophilic antioxidants. Probiotic yoghurts and fermented milks have higher AP than conventional yoghurt and milk because proteolysis by probiotics releases antioxidant peptides. Among the probiotics, Lactobacillus casei/acidophilus leads to the highest AP. The data are insufficient for cheese, but fermentation-based changes appear to make a positive impact on AP. In conclusion, AP might participate in the reported dairy product-protective effects against some chronic diseases.


Planta Medica ◽  
2015 ◽  
Vol 81 (16) ◽  
Author(s):  
T Ratanavalachai ◽  
S Thitiorul ◽  
A Itharat ◽  
N Runraksa ◽  
S Ruangnoo

2019 ◽  
Author(s):  
Priya Prakash ◽  
Travis Lantz ◽  
Krupal P. Jethava ◽  
Gaurav Chopra

Amyloid plaques found in the brains of Alzheimer’s disease (AD) patients primarily consists of amyloid beta 1-42 (Ab42). Commercially, Ab42 is synthetized using peptide synthesizers. We describe a robust methodology for expression of recombinant human Ab(M1-42) in Rosetta(DE3)pLysS and BL21(DE3)pLysS competent E. coli with refined and rapid analytical purification techniques. The peptide is isolated and purified from the transformed cells using an optimized set-up for reverse-phase HPLC protocol, using commonly available C18 columns, yielding high amounts of peptide (~15-20 mg per 1 L culture) in a short time. The recombinant Ab(M1-42) forms characteristic aggregates similar to synthetic Ab42 aggregates as verified by western blots and atomic force microscopy to warrant future biological use. Our rapid, refined, and robust technique to purify human Ab(M1-42) can be used to synthesize chemical probes for several downstream in vitro and in vivo assays to facilitate AD research.


2019 ◽  
Author(s):  
C. Tigrine ◽  
A. Kameli

In this study a polyphenolic extract from Cleome arabica leaves (CALE) was investigated for its antioxidant activity in vitro using DPPH•, metal chelating and reducing power methods and for its protective effects against AraC-induced hematological toxicity in vivo using Balb C mice. Results indicated that CALE exhibited a strong and dose-dependent scavenging activity against the DPPH• free radical (IC50 = 4.88 μg/ml) and a high reducing power activity (EC50 = 4.85 μg/ml). Furthermore, it showed a good chelating effects against ferrous ions (IC50 = 377.75 μg/ml). The analysis of blood showed that subcutaneous injection of AraC (50 mg/kg) to mice during three consecutive days caused a significant myelosupression (P < 0.05). The combination of CALE and AraC protected blood cells from a veritable toxicity. Where, the number of the red cells, the amount of hemoglobin and the percentage of the hematocrite were significantly high. On the other hand, AraC cause an elevation of body temperature (39 °C) in mice. However, the temperature of the group treated with CALE and AraC remained normal and did not exceed 37.5 °C. The observed biological effects of CALE, in vitro as well as in vivo, could be due to the high polyphenol and flavonoid contents. In addition, the antioxidant activity of CALE suggested to be responsible for its hematoprotective effect.


2020 ◽  
Vol 18 ◽  
Author(s):  
Zirui Zhang ◽  
Shangcong Han ◽  
Panpan Liu ◽  
Xu Yang ◽  
Jing Han ◽  
...  

Background: Chronic inflammation and lack of angiogenesis are the important pathological mechanisms in deep tissue injury (DTI). Curcumin is a well-known anti-inflammatory and antioxidant agent. However, curcumin is unstable under acidic and alkaline conditions, and can be rapidly metabolized and excreted in the bile, which shortens its bioactivity and efficacy. Objective: This study aimed to prepare curcumin-loaded poly (lactic-co-glycolic acid) nanoparticles (CPNPs) and to elucidate the protective effects and underlying mechanisms of wound healing in DTI models. Methods: CPNPs were evaluated for particle size, biocompatibility, in vitro drug release and their effect on in vivo wound healing. Results : The results of in vivo wound closure analysis revealed that CPNP treatments significantly improved wound contraction rates (p<0.01) at a faster rate than other three treatment groups. H&E staining revealed that CPNP treatments resulted in complete epithelialization and thick granulation tissue formation, whereas control groups resulted in a lack of compact epithelialization and persistence of inflammatory cells within the wound sites. Quantitative real-time PCR analysis showed that treatment with CPNPs suppressed IL-6 and TNF-α mRNA expression, and up-regulated TGF-β, VEGF-A and IL-10 mRNA expression. Western blot analysis showed up-regulated protein expression of TGF-β, VEGF-A and phosphorylatedSTAT3. Conclusion: Our results showed that CPNPs enhanced wound healing in DTI models, through modulation of the JAK2/STAT3 signalling pathway and subsequent upregulation of pro-healing factors.


Sign in / Sign up

Export Citation Format

Share Document