Inhibitory effect of cytotoxic nitrogen-containing heterocyclic stilbene analogues on VEGF protein secretion and VEGF, hTERT and c-Myc gene expression

MedChemComm ◽  
2015 ◽  
Vol 6 (10) ◽  
pp. 1809-1815 ◽  
Author(s):  
Rosa Martí-Centelles ◽  
Juan Murga ◽  
Eva Falomir ◽  
Miguel Carda ◽  
J. Alberto Marco

Twenty-one nitrogen-containing heterocyclic stilbenes were synthesized. Their cytotoxicity and effect on VEGF protein secretion as well asVEGF,hTERTandc-Mycgene expression were evaluated.

2005 ◽  
Vol 185 (3) ◽  
pp. 467-476 ◽  
Author(s):  
Teresa Priego ◽  
Miriam Granado ◽  
Ana Isabel Martín ◽  
Asunción López-Calderón ◽  
María Angeles Villanúa

The aim of this study was to investigate whether glucocorticoid administration had a beneficial effect on serum concentrations of insulin-like growth factor I (IGF-I) and on IGF-binding protein 3 (IGFBP-3) in rats injected with lipopolysaccharide (LPS). Adult male rats were injected with LPS or saline and pretreated with dexamethasone or saline. Dexamethasone administration decreased growth hormone (GH) receptor and IGF-I mRNA levels in the liver of control rats. LPS decreased GH receptor and IGF-I gene expression in the liver of saline-treated rats but not in the liver of dexamethasone-pretreated rats. In the kidney, GH receptor mRNA levels were not modified by dexamethasone or LPS treatment. However, LPS decreased renal IGF-I gene expression and dexamethasone pretreatment prevented this decrease. Serum concentrations of IGF-I were decreased by LPS, and dexamethasone pretreatment attenuated this effect. The gene expression of IGFBP-3 in the liver and kidney and its circulating levels were decreased by LPS. In control rats dexamethasone increased circulating IGFBP-3 and its gene expression in the liver, and decreased the proteolysis of this protein. Dexamethasone pretreatment attenuated the LPS-induced decrease in IGFBP-3 gene expression in the liver and prevented the LPS-induced decrease in IGFBP-3 gene expression in the kidney. Moreover, dexamethasone pretreatment attenuated the LPS-induced decrease in serum concentrations of IGFBP-3 and decreased the LPS-induced IGFBP-3 proteolysis in serum. In conclusion, dexamethasone pretreatment partially attenuates the inhibitory effect of LPS on serum IGF-I by blocking the decrease of its gene expression in the kidney as well as by attenuating the decrease in serum concentrations of IGFBP-3.


1998 ◽  
Vol 83 (2) ◽  
pp. 448-452
Author(s):  
H. F. Erden ◽  
I. H. Zwain ◽  
H. Asakura ◽  
S. S. C. Yen

Recently, we reported that the thecal compartment of the human ovary contains a CRF system replete with gene expression and protein for corticotropin-releasing factor (CRF), CRF-Receptor 1 (CRF-R1), and the blood-derived high affinity CRF-binding protein (CRF-BP). Granulosa cells are devoid of the CRF system. The parallel increases in intensity of CRF, CRF-R1, and 17α-hydroxylase messenger ribonucleic acid (mRNA) and proteins in thecal cells with follicular maturation suggest that the intraovarian CRF system may play an autocrine role regulating androgen biosynthesis, with a downstream effect on estrogen production by granulosa cells. The functionality of the ovarian CRF system may be conditioned by the relative presence of plasma-derived CRF-BP by virtue of its localization of protein, but not transcript in thecal cells and its ability to compete with CRF for the CRF receptor. To further these findings, in the present study we have examined the effect of CRF on LH-stimulated 17α-hydroxylase (P450c17) gene expression and androgen production by isolated thecal cells from human ovarian follicles (11–13 mm). During the 48-h culture, addition of LH (10 ng/mL) to the medium increased by 5- and 6-fold dehydroepiandrosterone and androstenedione production by thecal cells. Remarkably, the LH-stimulated, but not basal, androgen production was inhibited by CRF in a time- and dose-dependent manner. The half-maximal (ID50) effect dose of CRF occurred at 5 × 10−8 mol/L, and at a maximal concentration of 10−6 mol/L, CRF completely inhibited LH-stimulated androgen production. This inhibitory effect of CRF became evident at 12 h (45%), and by 24 h the effect was more pronounced, with a 70% reduction from baseline. As determined by Northern analyses, CRF dose dependently decreased LH-stimulated P450c17 mRNA levels, with a maximal inhibition of 85% P450c17 gene expression at a CRF concentration of 10−6 mol/L. With the addition of 10−6 mol/L of the antagonist α-helical CRF-(9–41), the inhibitory effect of CRF was partially reversed for both P450c17 mRNA (75%) and androgen production (50%), indicating the CRF-R1-mediated event. In conclusion, the present study demonstrated a potent inhibitory effect of CRF on LH-stimulated dehydroepiandrosterone and androstenedione production that appears to be mediated through the reduction of P450c17 gene expression. Thus, the ovarian CRF system may function as autocrine regulators for androgen biosynthesis in the thecal cell compartment to maintain optimal substrate for estrogen biosynthesis by granulosa cells. Further studies to define the role of CRF-BP in the endocrine modulation of the intraovarian CRF system are needed.


Blood ◽  
2013 ◽  
Vol 122 (24) ◽  
pp. 3884-3891 ◽  
Author(s):  
German Ott ◽  
Andreas Rosenwald ◽  
Elias Campo

Abstract MYC is a potent oncogene initially identified as the target of the t(8;14)(q24;q32) chromosome translocation in Burkitt lymphoma. MYC gene alterations have been identified in other mature B-cell neoplasms that are usually associated with an aggressive clinical behavior. Most of these tumors originate in cells that do not normally express MYC protein. The oncogenic events leading to MYC up-regulation seem to overcome the inhibitory effect of physiological repressors such as BCL6 or BLIMP1. Aggressive lymphomas frequently carry additional oncogenic alterations that cooperate with MYC dysregulation, likely counteracting its proapoptotic function. The development of FISH probes and new reliable antibodies have facilitated the study of MYC gene alterations and protein expression in large series of patients, providing new clinical and biological perspectives regarding MYC dysregulation in aggressive lymphomas. MYC gene alterations in large B-cell lymphomas are frequently associated with BCL2 or BCL6 translocations conferring a very aggressive behavior. Conversely, MYC protein up-regulation may occur in tumors without apparent gene alterations, and its association with BCL2 overexpression also confers a poor prognosis. In this review, we integrate all of this new information and discuss perspectives, challenges, and open questions for the diagnosis and management of patients with MYC-driven aggressive B-cell lymphomas.


Molecules ◽  
2021 ◽  
Vol 26 (10) ◽  
pp. 3012
Author(s):  
Dhanush Haspula ◽  
Michelle A. Clark

Angiotensin (Ang) II is well-known to have potent pro-oxidant and pro-inflammatory effects in the brain. Extensive crosstalk between the primary Ang II receptor, Ang type 1 receptor (AT1R), and the cannabinoid type 1 receptor (CB1R) has been demonstrated by various groups in the last decade. Since activation of glial CB1R has been demonstrated to play a key role in the resolution of inflammatory states, we investigated the role of Ang II (100 nM) and/or ACEA (10 nM), a potent CB1R-specific agonist in the regulation of inflammatory markers in astrocytes from spontaneously hypertensive rats (SHR) and Wistar rats. Astrocytes were cultured from brainstems and cerebellums of SHR and Wistar rats and assayed for IL1β and IL10 gene expression and secreted fraction, in treated and non-treated cells, by employing qPCR and ELISA, respectively. mRNA expression of both IL10 and IL1β were significantly elevated in untreated brainstem and cerebellar astrocytes isolated from SHR when compared to Wistar astrocytes. No changes were observed in the secreted fraction. While ACEA-treatment resulted in a significant increase in IL10 gene expression in Wistar brainstem astrocytes (Log2FC ≥ 1, p < 0.05), its effect in SHR brainstem astrocytes was diminished. Ang II treatment resulted in a strong inhibitory effect on IL10 gene expression in astrocytes from both brain regions of SHR and Wistar rats (Log2FC ≤ −1, p < 0.05), and an increase in IL1β gene expression in brainstem astrocytes from both strains (Log2FC ≥ 1, p < 0.05). Co-treatment of Ang II and ACEA resulted in neutralization of Ang II-mediated effect in Wistar brainstem and cerebellar astrocytes, but not SHR astrocytes. Neither Ang II nor ACEA resulted in any significant changes in IL10 or IL1β secreted proteins. These data suggest that Ang II and ACEA have opposing roles in the regulation of inflammatory gene signature in astrocytes isolated from SHR and Wistar rats. This however does not translate into changes in their secreted fractions.


1987 ◽  
Vol 7 (10) ◽  
pp. 3554-3560
Author(s):  
F Cavalieri ◽  
M Goldfarb

Induction of quiescent BALB/c 3T3 murine fibroblasts by platelet-derived growth factor (PDGF) or fibroblast growth factor (FGFs) is accompanied by induction of c-myc gene expression. To study the role of c-myc in cell growth, we transfected BALB/c 3T3 cells with a plasmid construct containing a glucocorticoid-inducible c-myc gene. When these transfected cells were growth arrested in PDGF-FGF-freedefined medium, glucocorticoid treatment induced S-phase DNA synthesis. This induction of DNA synthesis was inefficient, and cell proliferation was not evident, suggesting that growth factors act through stimulation of c-myc expression together with other intracellular events.


Viruses ◽  
2018 ◽  
Vol 10 (8) ◽  
pp. 414 ◽  
Author(s):  
María Q. Marín ◽  
Patricia Pérez ◽  
Carmen E. Gómez ◽  
Carlos Óscar S. Sorzano ◽  
Mariano Esteban ◽  
...  

Hepatitis C virus (HCV) represents a major global health problem for which a vaccine is not available. Modified vaccinia virus Ankara (MVA)-HCV is a unique HCV vaccine candidate based in the modified vaccinia virus Ankara (MVA) vector expressing the nearly full-length genome of HCV genotype 1a that elicits CD8+ T-cell responses in mice. With the aim to improve the immune response of MVA-HCV and because of the importance of interferon (IFN) in HCV infection, we deleted in MVA-HCV the vaccinia virus (VACV) C6L gene, encoding an inhibitor of IFN-β that prevents activation of the interferon regulatory factors 3 and 7 (IRF3 and IRF7). The resulting vaccine candidate (MVA-HCV ΔC6L) expresses all HCV antigens and deletion of C6L had no effect on viral growth in permissive chicken cells. In human monocyte-derived dendritic cells, infection with MVA-HCV ΔC6L triggered severe down-regulation of IFN-β, IFN-β-induced genes, and cytokines in a manner similar to MVA-HCV, as defined by real-time polymerase chain reaction (PCR) and microarray analysis. In infected mice, both vectors had a similar profile of recruited immune cells and induced comparable levels of adaptive and memory HCV-specific CD8+ T-cells, mainly against p7 + NS2 and NS3 HCV proteins, with a T cell effector memory (TEM) phenotype. Furthermore, antibodies against E2 were also induced. Overall, our findings showed that while these vectors had a profound inhibitory effect on gene expression of the host, they strongly elicited CD8+ T cell and humoral responses against HCV antigens and to the virus vector. These observations add support to the consideration of these vectors as potential vaccine candidates against HCV.


Molecules ◽  
2018 ◽  
Vol 23 (12) ◽  
pp. 3071 ◽  
Author(s):  
Giustino Orlando ◽  
Sheila Leone ◽  
Claudio Ferrante ◽  
Annalisa Chiavaroli ◽  
Adriano Mollica ◽  
...  

Besides its role as key regulator in gonadotropin releasing hormone secretion, reproductive function, and puberty onset, kisspeptin has been proposed to act as a bridge between energy homeostasis and reproduction. In the present study, to characterize the role of hypothalamic kisspeptin as metabolic regulator, we evaluated the effects of kisspeptin-10 on neuropeptide Y (NPY) and brain-derived neurotrophic factor (BDNF) gene expression and the extracellular dopamine (DA), norepinephrine (NE), serotonin (5-hydroxytriptamine, 5-HT), dihydroxyphenylacetic acid (DOPAC), and 5-hydroxyindoleacetic acid (5-HIIA) concentrations in rat hypothalamic (Hypo-E22) cells. Our study showed that kisspeptin-10 in the concentration range 1 nM–10 μM was well tolerated by the Hypo-E22 cell line. Moreover, kisspeptin-10 (100 nM–10 μM) concentration independently increased the gene expression of NPY while BDNF was inhibited only at the concentration of 10 μM. Finally, kisspeptin-10 decreased 5-HT and DA, leaving unaffected NE levels. The inhibitory effect on DA and 5-HT is consistent with the increased peptide-induced DOPAC/DA and 5-HIIA/5-HT ratios. In conclusion, our current findings suggesting the increased NPY together with decreased BDNF and 5-HT activity following kisspeptin-10 would be consistent with a possible orexigenic effect induced by the peptide.


Sign in / Sign up

Export Citation Format

Share Document