Antioxidant activity of 1-hydroxy-1-norresistomycin derived from Streptomyces variabilis KP149559 and evaluation of its toxicity against zebra fish Danio rerio

RSC Advances ◽  
2016 ◽  
Vol 6 (20) ◽  
pp. 16615-16623 ◽  
Author(s):  
V. Ramalingam ◽  
R. Rajaram

Extraction of bioactive compounds from marine actinomycetes and its antimicrobial activity.

2018 ◽  
Vol 48 (6) ◽  
Author(s):  
Caroline Pagnossim Boeira ◽  
Natiéli Piovesan ◽  
Marcela Bromberger Soquetta ◽  
Déborah Cristina Barcelos Flores ◽  
Bruna Nichelle Lucas ◽  
...  

ABSTRACT: The aim of this study was to evaluate the effect of extraction conditions on bioactive compounds, as well as on antioxidant activity, and the antimicrobial activity of the extracts with the highest antioxidant characteristics. The extracts were obtained by conventional method and ultrasound-assisted extraction at various temperatures (20°C, 40°C and 60°C). Total phenolics, total flavonoids, antimicrobial activity and antioxidant activity were quantified by the methods of DPPH, FRAP, and ORAC, respectively. The conventional extraction method and ultrasound method influenced the phenolic content at all the tested temperatures. Flavonoids were not influenced by extraction methods. The antioxidant activity (DPPH) was highest in the ultrasonic method at temperatures of 40°C and 60°C; however, in the case of the FRAP method the best results were for the conventional extraction method. The conventional and ultrasonic methods did not influence the IC50 at temperatures of 20°C and 40°C, but using ORAC the antioxidant activity was influenced by the methods at all temperatures. The extract obtained at 60°C by the ultrasound method had high antimicrobial action in relation to the strains of Salmonella sp., Escherichia coli, and Staphylococcus aureus. Extraction ultrasonic-assisted can be considered adequate to obtain extracts of marcela, which are rich in bioactive compounds with high antioxidant activity.


2020 ◽  
Vol 10 (2) ◽  
pp. 139-144
Author(s):  
Papiya Chakravorty ◽  
Nidhi Srivastava ◽  
Ahongshangbam Ibeyaima ◽  
Indira P. Sarethy

Background: Microorganisms from understudied habitats have been shown to be an important source of novel bioactive compounds. Endophytes constitute an underexplored group of microorganisms, of which those from aquatic plants have been even less studied. Nelumbo nucifera (lotus) is an aquatic plant with medicinal properties. A screening program for endophytes from N. nucifera by our research group resulted in many microbial isolates, of which isolate L-003 was a promising candidate, exhibiting antimicrobial and antioxidant activities. Objectives: The major objectives were to characterize the endophyte L-003 for its antimicrobial and antioxidant properties, identify the constituent bioactive compounds by GC-MS and characterize their activities further using in silico software. Methods: L-003 was identified by PIBWin software. Antimicrobial activity of the aqueous and organic extracts of culture supernatant of L-003 was checked against a panel of bacteria and fungi. Since the ethyl acetate extract showed the best antimicrobial activity, it was further characterized by thin layer chromatography, an activity confirmed by bioautography and purified by column chromatography. Total antioxidant capacity was assayed by standard techniques. Partially purified metabolite fingerprints were identified by GC-MS analysis. Results: Based on morphological and biochemical analyses, isolate L-003 was identified as belonging to Streptococcus sp. All the organic solvent extracts showed antimicrobial activity. Ethyl acetate extract showed maximum antimicrobial activity against all selected targets and exhibited antioxidant activity too, though butanol and aqueous extracts showed higher antioxidant activity. Two compounds, Acetic acid,-hydroxy, methyl ester and Disulfide, dipropyl, were identified by GC-MS in the metabolite fingerprint. These compounds showed differences in observed and calculated retention indices and could, therefore, be novel. In silico activity, characterization confirmed the antimicrobial and antioxidant properties attributed to these compounds. Conclusion: This is the first study reporting metabolite fingerprinting, identification and characterization of bioactive compounds from an endophytic isolate of Nelumbo nucifera. We conclude that endophytes from aquatic plants could be prospective sources of bioactive compounds, in this case with antimicrobial and antioxidant activities.


2021 ◽  
Vol 16 (7) ◽  
pp. 180-196
Author(s):  
P. Sangavi ◽  
R. Rajapriya ◽  
Firthous Sannathul ◽  
K. Langeswaran ◽  
S. Gowtham Kumar

In this study, the aqueous and ethanol extracts of Musa sapientum peel and pulp were investigated for phytochemical screening and antioxidant activity. Antimicrobial activity and Minimal Inhibitory Concentration (MIC) were analyzed against three different microbial pathogens. From the reported GCMS analysis, the selected compounds were subjected to anti-cancer activity against breast cancer using in silico study. The highest antioxidant activity, presence of secondary metabolites and microbial activity were observed in a significant range. MIC examination revealed that the three different microbial pathogens were sensitive for the peel extract. . In silico study, out of 7 selected compounds, 4 compounds exhibit the highest docking score, binding free energy and acceptable pharmaceutical properties. Molecular dynamics simulation was performed for the top two compounds and the resulting analysis explained the protein-ligand stability and the results concluded that the lead compounds possess the highest stability. From this study, it was concluded that the selective bioactive compounds from Musa sapientum peel exhibited significant antioxidant and antimicrobial activity through in vitro analysis and also the bioactive compounds possessed anti-cancer property which was revealed by in silico investigation.


2018 ◽  
Vol 39 (4) ◽  
pp. 1849
Author(s):  
Andréia Assunção Soares ◽  
Ezilda Jacomassi ◽  
Rosana Da Mata ◽  
Karoline Franciani Cardoso Lopes ◽  
Jessé Lahos Borges ◽  
...  

The functionality of nutraceutical foods is attributed to their bioactive compounds. These compounds are widely produced by plants, such as phenolic compounds, which have antioxidant activity and/or antimicrobial activity, acting against damage to macromolecules such as lipids, proteins, and nucleic acids. Secondary plant metabolites, including classes such as phenolic compounds, alkaloids, and terpenoids, have a wide variety of biological activities with medicinal potential. These secondary metabolites are considered bioactive compounds. The Zingiberaceae family received special attention for their large bioactive compound production. Such compounds are useful in foods as herbs, spices, flavorings, and seasonings and in the pharmaceutical and cosmetic industries as antioxidants and antimicrobials. Gingers are recognized as safe by the American Food and Drug Administration (FDA), resulting in no side effects when consumed in moderate amounts. Recent studies show that, in addition to rhizomes, the leaves and flowers of some ginger species have antioxidant activity and consequent medicinal potential. Studies have demonstrated that in vitro and in vivo research is needed to evaluate the efficacy of ginger extracts and understand their role in the modulation of biological and molecular pathways, thus enabling the development of new therapeutic strategies. Thereby, the present work aims to provide a bibliographic review on the antimicrobial activity of Zingiber officinale Roscoe and Alpinia purpurata (Vieill.) K. Schum. (Zingiberaceae), popularly known as ginger and red ginger respectively, and their potential use in the One Health initiative.


2019 ◽  
Vol 54 (4) ◽  
pp. 1225-1231 ◽  
Author(s):  
Luís M. G. Castro ◽  
Elisabete M. C. Alexandre ◽  
Manuela Pintado ◽  
Jorge A. Saraiva

2018 ◽  
Vol 48 (11) ◽  
Author(s):  
Caroline Pagnossim Boeira ◽  
Natiéli Piovesan ◽  
Marcela Bromberger Soquetta ◽  
Déborah Cristina Barcelos Flores ◽  
Bruna Nichelle Lucas ◽  
...  

ABSTRACT: The aim of this work was to determine the best extraction condition of bioactive compounds from lemongrass (Cymbopogon citratus), using the conventional method and ultrasonic assisted extraction, varying the temperature, in order to evaluate the antioxidant activity and the antimicrobial activity of the extract with higher antioxidant power in fresh chicken sausages during the storage period. The extracts were obtained by the conventional method (solvent extraction) and by ultrasound assisted extraction, varying the temperature (20°C, 40°C and 60°C). Phenolic compounds, total flavonoids and antioxidant activity were measured by the DPPH, FRAP, ORAC methods. Conventional extraction and ultrasound methods influenced the phenolic and total flavonoid content at all tested temperatures. Conventional and ultrasonic methods did not influence the IC50 at temperatures of 40°C and 60°C. The antioxidant activity by the DPPH method and by the FRAP method was superior in the conventional method at the temperature of 60°C, however by the ORAC method the best results were in the extraction by ultrasound. The results demonstrate that the conventional extraction at 60ºC was better to obtain extracts of lemongrass with greater amount of bioactive compounds. The antimicrobial capacity evaluated in sausage of fresh chicken showed that in the concentration of 1.0% of the extract protected the product as the growth of mesophilic aerobes and against the growth of psychrotrophic bacteria. Lemongrass can be considered as a natural alternative to obtain extracts rich in bioactive compounds, with antioxidant activity and high antimicrobial capacity.


Author(s):  
Waras Nurcholis ◽  
Edy Djauhari Purwakusumah ◽  
Mono Rahardjo ◽  
Latifah K. Darusman

Temulawak (Curcuma  xanthorrhizaRoxb.) belongs to the family Zingiberaceae, has been empirically used as herbal medicines. The research was aimed to evaluate three promising lines of Temulawak based on their high bioactive contents (xanthorrhizol and curcuminoid) and its in vitro bioactivity (antioxidant and toxicity), and to obtain information on agrobiophysic environmental condition which produced high bioactive compounds. The xanthorrhizol and curcuminoid contents were measured by HPLC. In vitro antioxidant and toxicity were determined by DPPH (1,1-diphenyl-2-picryl-hydrazyl) method and BSLT (Brine Shrimp Lethality Test). The result showed that promising line A produced the highest yield of bioactive and bioactivity, i.e. 0.157 and 0.056 g plant-1of xanthorrizol and curcuminoid respectively. The IC50 of antioxidant activity was 65.09 mg L-1and LC50of toxicity was 69.05 mg L-1. In this study, Cipenjo had the best temulawak performance than two other locations. According to the agrobiophysic parameters, Cipenjo environmental condition was suitable for temulawak cultivation with temperature 28-34 ºC, rainfall ± 223.97 mm year-1 and sandy clay soil. Keywords: antioxidant, curcuminoid, promising lines, temulawak, xanthorrhizol


2020 ◽  
Vol 50 (3) ◽  
pp. 460-469
Author(s):  
Damir Zyaitdinov ◽  
Alexandr Ewteew ◽  
Anna Bannikova

Introduction. Bioactive compounds are a very popular topic of modern food science, especially when it concerns obtaining polyphenols from cereals. The antiradical, antioxidant, and anti-inflammatory properties of these ingredients allow them to inhibit and prevent coronary, artery, and cardiovascular diseases, as well as several types of cancer. Encapsulation is an effective technology that protects bioactive ingredients during processing and storage. In addition, it also prevents any possible interaction with other food constituents. The research objective was to obtain effective tools of controlled delivery of bioactive compounds. The study featured whey protein as a wall material in combination with maltodextrin to encapsulate the bioactives from oat bran. Study objects and methods. The processed material was oat bran. The technology of its biotransformation was based on ultrasound processing and enzymatic hydrolysis. The antioxidant properties were determined using a coulometer of Expert – 006-antioxidants type (Econix-Expert LLC, Moscow, Russia). Separation and quantitative determination of extract were followed using a Stayer HPLC device (Akvilon, Russia) and a system column Phenomenex Luna 5u C18(2) (250×4.6 mm). The total phenolic content was measured by a modified Folin-Ciocalteu method. To prepare microcapsules, whey protein concentrate (WPC) and maltodextrin (MD) solutions were mixed at ratios 6:4, 4:6, and 5:5. After that, the mixes were treated by ultrasonication and 10% w/w of guar gum solution as double wall material. The encapsulation efficiency (EE) was determined as a ratio of encapsulated phenolic content to total phenolic content. A digestion protocol that simulates conditions of the human gastric and intestinal tract was adapted to investigate the release kinetics of the extracts. Results and discussion. Ferulic acid is the main antioxidant in cereals. Its amount during extraction was consistent with published data: 9.2 mg/mL after ultrasound exposure, 9.0 mg/mL after enzymatic extraction, and 8.6 mg/mL after chemical treatment. The antioxidant activity of the obtained polyphenols was quite high and reached 921 cu/mL. It depended on the concentration of the preparation in the solution and the extraction method. The polyphenols obtained by ultrasonic exposure and enzyme preparations proved to have a more pronounced antioxidant activity. The highest EE (95.28%) was recorded at WPC:MD ratio of 60:40. In vitro enzymatic hydrolysis protocol simulating digestion in the gastrointestinal tract was used to study the effect of capsule structural characteristics on the kinetics of polyphenol release. The percentage of o polyphenols released from capsules ranged from 70% to 83% after two hours of digestion, which confirmed the effectiveness of microencapsulation technology. Conclusion. The research confirmed the possibility of using polyphenols obtained by the biotechnological method from oat bran as functional ingredients. Eventually, they may be used in new functional products with bifidogenic properties. Whey protein can be used to encapsulate polyphenols as the wall material of microcapsules.


2019 ◽  
Vol 15 (2) ◽  
pp. 156-164 ◽  
Author(s):  
Reza Farahmandfar ◽  
Maryam Asnaashari ◽  
Yegane Asadi ◽  
Batool Beyranvand

Background: It is important to study about the use of natural antioxidants as alternatives to synthetic ones due to the possibility of carcinogenic effects of synthetic antioxidants. This study is comparing the effect of the ultrasound-assisted and maceration extraction methods on antioxidant activity of Matricaria recutita. Methods: Bioactive compounds including phenolic, tocopherol, flavonoid and tannins and antioxidant activity of the extracts were evaluated. Moreover, extracts obtained from ultrasound and maceration methods were added to sunflower oil without any antioxidants at level of 200, 500 and 800 ppm, after that samples were heated at 180°C. Oxidation of the samples were evaluated after 0, 4, 8, 12, 16, 20 and 24 hours by measuring Peroxide Value (PV), Conjugated Diene (CD), Iodine Value (IV), Carbonyl Value (CV), Total Polar Compounds (TPC), Oil Stability Index (OSI), Color Index (CI) and acid value (AV). Results: The result showed total phenol (42.90 mg gallic acid/g extract), tocopherol (120.46 µg α - tocopherol/ml extract), flavonoid (2.64 mg/100 g extract) and tannins (3.89 mg gallic acid/g extract) of ultrasound extracts were higher than maceration extracts. Antioxidant activity of the extract was evaluated by DPPH assay which indicated 800 ppm of the Matricaria recutita extracted by ultrasound was the highest radical scavenging ability. Conclusion: Result indicated both ultrasound and maceration extracts could increase the oil oxidative stability but could not increase compared to BHA. In most cases, the extract samples by ultrasound had a better effect on stabilizing of sunflower oil during frying.


Sign in / Sign up

Export Citation Format

Share Document