scholarly journals Plant leaves as templates for soft lithography

RSC Advances ◽  
2016 ◽  
Vol 6 (27) ◽  
pp. 22469-22475 ◽  
Author(s):  
Wenming Wu ◽  
Rosanne M. Guijt ◽  
Yuliya E. Silina ◽  
Marcus Koch ◽  
Andreas Manz

Complex microvascular venation patterns of natural leaves are replicated into PDMS replicas, which allows for a leakage-tight seal with a flat substrate despite the surface topography.

2021 ◽  
Vol 8 (12) ◽  
pp. 204
Author(s):  
Nor Azila Abd. Wahid ◽  
Azadeh Hashemi ◽  
John J. Evans ◽  
Maan M. Alkaisi

Culture platform surface topography plays an important role in the regulation of biological cell behaviour. Understanding the mechanisms behind the roles of surface topography in cell response are central to many developments in a Lab on a Chip, medical implants and biosensors. In this work, we report on a novel development of a biocompatible conductive hydrogel (CH) made of poly (3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) and gelatin with bioimprinted surface features. The bioimprinted CH offers high conductivity, biocompatibility and high replication fidelity suitable for cell culture applications. The bioimprinted conductive hydrogel is developed to investigate biological cells’ response to their morphological footprint and study their growth, adhesion, cell–cell interactions and proliferation as a function of conductivity. Moreover, optimization of the conductive hydrogel mixture plays an important role in achieving high imprinting resolution and conductivity. The reason behind choosing a conducive hydrogel with high resolution surface bioimprints is to improve cell monitoring while mimicking cells’ natural physical environment. Bioimprints which are a 3D replication of cellular morphology have previously been shown to promote cell attachment, proliferation, differentiation and even cell response to drugs. The conductive substrate, on the other hand, enables cell impedance to be measured and monitored, which is indicative of cell viability and spread. Two dimensional profiles of the cross section of a single cell taken via Atomic Force Microscopy (AFM) from the fixed cell on glass, and its replicas on polydimethylsiloxane (PDMS) and conductive hydrogel (CH) show unprecedented replication of cellular features with an average replication fidelity of more than 90%. Furthermore, crosslinking CH films demonstrated a significant increase in electrical conductivity from 10−6 S/cm to 1 S/cm. Conductive bioimprints can provide a suitable platform for biosensing applications and potentially for monitoring implant-tissue reactions in medical devices.


2009 ◽  
Vol 97 (1) ◽  
pp. 369-378 ◽  
Author(s):  
Sandrine A. Hocdé ◽  
Ollivier Hyrien ◽  
Richard E. Waugh

Proceedings ◽  
2021 ◽  
Vol 68 (1) ◽  
pp. 6
Author(s):  
Tom Greig ◽  
Russel Torah ◽  
Kai Yang

Dispenser printing is a versatile way of manufacturing prototype and bespoke e-textiles that uses a robotically actuated nozzle to dispense pastes. Investigation of printing on a flat substrate, however, revealed that the nozzle must be kept between 50 and 200 µm above the material’s surface in order to print effectively. In order to maintain this clearance when printing on uneven materials, the surface topography of the substrate must be measured and compensated for. However, the accuracy of the laser displacement meter used here was reduced when measuring the translucent interface layer necessary when printing on textiles. Adding various concentrations of dye to the interface was explored. A single layer of interface with 20 mg of dye added per gram showed significantly improved results with an average error of 146 µm compared to the 550 µm for the clear interface. Crucially, the standard deviation in the error was only 31 µm, down from 101 µm, meaning that an offset could be applied to get measurements that would keep the nozzle’s clearance within the necessary 150 µm range.


Author(s):  
C. T. Nightingale ◽  
S. E. Summers ◽  
T. P. Turnbull

The ease of operation of the scanning electron microscope has insured its wide application in medicine and industry. The micrographs are pictorial representations of surface topography obtained directly from the specimen. The need to replicate is eliminated. The great depth of field and the high resolving power provide far more information than light microscopy.


Author(s):  
P.G. Pawar ◽  
P. Duhamel ◽  
G.W. Monk

A beam of ions of mass greater than a few atomic mass units and with sufficient energy can remove atoms from the surface of a solid material at a useful rate. A system used to achieve this purpose under controlled atmospheres is called an ion miliing machine. An ion milling apparatus presently available as IMMI-III with a IMMIAC was used in this investigation. Unless otherwise stated, all the micro milling operations were done with Ar+ at 6kv using a beam current of 100 μA for each of the two guns, with a specimen tilt of 15° from the horizontal plane.It is fairly well established that ion bombardment of the surface of homogeneous materials can produce surface topography which resembles geological erosional features.


Author(s):  
N.C. Lyon ◽  
W. C. Mueller

Schumacher and Halbsguth first demonstrated ectodesmata as pores or channels in the epidermal cell walls in haustoria of Cuscuta odorata L. by light microscopy in tissues fixed in a sublimate fixative (30% ethyl alcohol, 30 ml:glacial acetic acid, 10 ml: 65% nitric acid, 1 ml: 40% formaldehyde, 5 ml: oxalic acid, 2 g: mecuric chloride to saturation 2-3 g). Other workers have published electron micrographs of structures transversing the outer epidermal cell in thin sections of plant leaves that have been interpreted as ectodesmata. Such structures are evident following treatment with Hg++ or Ag+ salts and are only rarely observed by electron microscopy. If ectodesmata exist without such treatment, and are not artefacts, they would afford natural pathways of entry for applied foliar solutions and plant viruses.


Author(s):  
David C. Joy ◽  
Dennis M. Maher

High-resolution images of the surface topography of solid specimens can be obtained using the low-loss technique of Wells. If the specimen is placed inside a lens of the condenser/objective type, then it has been shown that the lens itself can be used to collect and filter the low-loss electrons. Since the probeforming lenses in TEM instruments fitted with scanning attachments are of this type, low-loss imaging should be possible.High-resolution, low-loss images have been obtained in a JEOL JEM 100B fitted with a scanning attachment and a thermal, fieldemission gun. No modifications were made to the instrument, but a wedge-shaped, specimen holder was made to fit the side-entry, goniometer stage. Thus the specimen is oriented initially at a glancing angle of about 30° to the beam direction. The instrument is set up in the conventional manner for STEM operation with all the lenses, including the projector, excited.


Author(s):  
J.P. Benedict ◽  
Ron Anderson ◽  
S. J. Klepeis

Traditional specimen preparation procedures for non-biological samples, especially cross section preparation procedures, involves subjecting the specimen to ion milling for times ranging from minutes to tens of hours. Long ion milling time produces surface alteration, atomic number and rough-surface topography artifacts, and high temperatures. The introduction of new tools and methods in this laboratory improved our ability to mechanically thin specimens to a point where ion milling time was reduced to one to ten minutes. Very short ion milling times meant that ion milling was more of a cleaning operation than a thinning operation. The preferential thinning and the surface topography that still existed in briefly ion milled samples made the study of interfaces between materials such as platinum silicide and silicon difficult. These two problems can be eliminated by completely eliminating the ion milling step and mechanically polishing the sample to TEM transparency with the procedure outlined in this communication. Previous successful efforts leading to mechanically thinned specimens have shown that problems center on tool tilt control, removal of polishing damage, and specimen cleanliness.


Author(s):  
William Krakow ◽  
Alec N. Broers

Low-loss scanning electron microscopy can be used to investigate the surface topography of solid specimens and provides enhanced image contrast over secondary electron images. A high resolution-condenser objective lens has allowed the low-loss technique to resolve separations of Au nucleii of 50Å and smaller dimensions of 25Å in samples coated with a fine grained carbon-Au-palladium layer. An estimate of the surface topography of fine grained vapor deposited materials (20 - 100Å) and the surface topography of underlying single crystal Si in the 1000 - 2000Å range has also been investigated. Surface imaging has also been performed on single crystals using diffracted electrons scattered through 10−2 rad in a conventional TEM. However, severe tilting of the specimen is required which degrades the resolution 15 to 100 fold due to image forshortening.


Nanoscale ◽  
2019 ◽  
Vol 11 (44) ◽  
pp. 21147-21154 ◽  
Author(s):  
Raymond W. Friddle ◽  
Konrad Thürmer

Video microscopy and AFM are used to relate surface topography to a mineral's ability to promote ice growth. On feldspar, abundant as atmospheric dust, basic surface steps can facilitate condensation and freezing when air becomes saturated.


Sign in / Sign up

Export Citation Format

Share Document