scholarly journals UV-VIS spectroscopy for monitoring yogurt stability during storage time

2016 ◽  
Vol 8 (30) ◽  
pp. 5962-5969 ◽  
Author(s):  
B. Aliakbarian ◽  
L. Bagnasco ◽  
P. Perego ◽  
R. Leardi ◽  
M. Casale

Color, texture and taste are key elements of a consumer's buying decision; thus, monitoring the stability of these features throughout the entire period of yogurt validity is fundamental for dairy product producers.

2014 ◽  
Vol 13 (1) ◽  
Author(s):  
Dariusz Wyrzykowski ◽  
Joanna Pranczk ◽  
Dagmara Jacewicz ◽  
Aleksandra Tesmar ◽  
Bogusław Pilarski ◽  
...  

AbstractA potentiometric titration method (PT) and a stopped-flow kinetic technique monitored by a UV−Vis spectroscopy have been used to characterize the stability of series of Co(II)- and Ni(II)-thiodiacetato complexes, M(TDA), in the presence of 1,10-phenanthroline (phen) or 2,2’-bipyridine (bipy) in aqueous solutions. The stability constants of the binary (1:1), ternary (1:1:1) as well as the resulting hydroxo complexes were evaluated and compared to the corresponding oxydiacetate complexes. Based on the species distribution as a function of pH the relative predominance of the species in the system over a pH range was discussed. Furthermore, the kinetic measurements of the substitution reactions of the aqua ligands to phen or bipy in the coordination sphere of the binary complexes M(TDA) were performed in the 288–303 K temperature range, at a constant concentration of phen or bipy and at seven different concentrations of the binary complexes (0.2–0.5 mM). The kinetic stability of the M(TDA) complexes was discussed in relation to the experimental conditions and the kind of the auxiliary ligands (phen/bipy). Moreover, the influence of the type of primary ligand (thiodiacetate/oxydiacetate) on the substitution rate of the auxiliary ligands was also compared.


2016 ◽  
Vol 1 (3) ◽  
pp. 1-10
Author(s):  
Begoña Parrado Aliod ◽  
Wilfried Kugler ◽  
Tim Häring

Purpose: This study was performed to investigate the chemical stability of different dyes used in chromovitrectomy and the influence of various product parameters on it. Methods: Buffered dye solutions were prepared containing 1.5 g/L acid violet 17, 0.25 g/L brilliant blue G, 1.3 g/L bromophenol blue, and 1.5 g/L trypan blue, combined with deuterium oxide, polyethylene glycol 3350, and D-mannitol as additives. For accelerated storage testing, samples were incubated for 400 h at 80°C corresponding to 2 years according to the Van ‘t Hoff equation. After different incubation times samples were taken for UV/Vis spectroscopy, pH measurement, and osmometry. Results: Depending on dye, additive, and packaging, different solutions exhibit differences in chemical stability and hence shelf life. Packaging in syringes instead of vials increases dye stability. Additives may negatively influence important parameters, e.g. polyethylene glycol 3350 increases osmolality beyond the physiological range. Notably, acid violet 17 is chemically unstable except in D-mannitol-containing buffer, packed in syringes. However, simultaneously, D-mannitol leads to a pH shift below 7.0. Conclusion: In summary, dye solutions filled in syringes should be preferred to vials to slow down oxidative degradation. Especially acid violet 17 solutions should be used with caution because the addition of D-mannitol may contribute to pH values beyond the physiological range.


2020 ◽  
Vol 36 (05) ◽  
pp. 879-888
Author(s):  
Ziad Ayyad ◽  
Muhannad Qurie ◽  
Amal Odeh Natshe ◽  
Saleh Sawalha ◽  
Fuad Al-Rimawi

The stability of virgin olive oil (VOO) used as a packing medium for traditional concentrated Yoghurt decreased during time and the product could deteriorate during the storage time. In this investigation, different natural additives such as dried Arum Palaestinum leaves (AP), Tomato Peel (TP) and Chili Pepper (CP) have been used to enhance the quality and stability of packing medium VOO for traditional canned concentrated Yoghurt balls. Parts VOO samples added with natural additives were stored as packing medium for traditional canned concentrated Yoghurt balls. Other part was stored without concentrated Yoghurt in the same storage conditions. All samples were analyzed for their initial quality indexes and during the storage period of six months. At the end of storage, results revealed that the % acidity for all VOO samples used as a packing medium showed a higher value than the samples stored without concentrated Yoghurt balls. On the other side, peroxide values for all stored samples of both parts were less than the control sample without additives. Extinction coefficients (K232, K270) for VOO samples with the natural additives showed increased trend during the storage time, but it didn't exceed the accepted limit for VOO. Total phenol content for all samples were gradually decreased during storage period, whereas samples with the natural additives showed higher values than the controls. All the natural additives (CP, TP, AP) showed a positive trend in enhancing and improving the different VOO quality indexes in our study in particular those samples added with CP during the storage time.


2020 ◽  
pp. 187-187
Author(s):  
Adnan Qamar ◽  
Attique Arshad ◽  
Zahid Anwar ◽  
Rabia Shaukat ◽  
Muhammad Amjad ◽  
...  

With advancement of nanoscience, ?nanofluids? are becoming quite popular among thermal engineers. High thermal conductivity, relatively less settling speed, and higher surface area of nanoparticles are a few key promoting properties. The last two decades have seen dramatic progress towards using nanoparticles in industrial applications. However, the stability and rheological characteristics of prepared nanofluids have serious effects on their transport characteristics, but unfortunately, this has not found proper attention from researchers. In this study, stability and rheological characteristics of ZnO nanoparticles within deionized water, ethylene glycol, and their blends have been extensively tested. Stability was observed using UV-vis spectroscopy, while the viscosity was measured with the help of a rheometer. The data was collected with 0.011-0.044 wt. % loading of nanoparticles, while experiments were conducted within 15-55oC temperature range. Better stability was recorded when nanofluids were prepared with pure ethylene glycol. Experiments showed that the viscosity increased with particle loading, whereas the effect of surfactants appeared to be insignificant. Research results were used to assess predictions of different viscosity models. Experimental data was overpredicted by Einstein, Brinkman, and Batchelor?s models.


2020 ◽  
Vol 14 (2) ◽  
Author(s):  
S.-K. Lin ◽  
S.-M. Tsai ◽  
J.-C. Huang ◽  
S.-C. Lee ◽  
S.-H. Wu ◽  
...  

2019 ◽  
Vol 13 (5) ◽  
pp. 256-260
Author(s):  
Naoyoshi Nagata ◽  
Mari Tohya ◽  
Fumihiko Takeuchi ◽  
Wataru Suda ◽  
Suguru Nishijima ◽  
...  

2018 ◽  
Vol 232 (2) ◽  
pp. 281-293 ◽  
Author(s):  
Kanak Roy ◽  
Subhadeep Saha ◽  
Biswajit Datta ◽  
Lovely Sarkar ◽  
Mahendra Nath Roy

AbstractAssembly of pyridine-2-aldoxime drug with cucurbit [6]uril (CB[6]) has been investigated by1H-NMR and 2D-ROESY NMR, UV-Vis spectroscopy, FT-IR spectroscopy, surface tension and conductivity measurements in aqueous saline environment. The distinct cationic receptor feature and the cavity dimension of the CB[6] emphasize that the macro-cyclic host molecule remain as complex with the nerve stimulus drug molecule. The results obtained from surface tension and specific conductivity measurements suggest 1:1 inclusion complex formation between drug and CB[6]. The stability constant evaluated by UV-Vis spectroscopic approach is 2.21×105M−1at 298.15 K, which indicates that the complex is sufficiently stable at physiological temperature.


Materials ◽  
2020 ◽  
Vol 13 (18) ◽  
pp. 4149
Author(s):  
Laura M. Echeverry-Cardona ◽  
Natalia Álzate ◽  
Elisabeth Restrepo-Parra ◽  
Rogelio Ospina ◽  
Jorge H. Quintero-Orozco

This study shows the energy optimization and stabilization in the time of solutions composed of H2O + TX-100 + Multi-Wall Carbon Nanotubes (MWCNTs), used to improve the mechanical properties of Portland cement pastes. For developing this research, sonication energies at 90, 190, 290, 340, 390, 440, 490 and 590 J/g are applied to a colloidal substance (MWCNTs/TX-100 + H2O) with a molarity of 10 mM. Raman spectroscopy analyses showed that, for energies greater than 440 J/g, there are ruptures and fragmentation of the MWCNTs; meanwhile at energies below 390 J/g, better dispersions are obtained. The stability of the dispersion over time was evaluated over 13 weeks using UV-vis spectroscopy and Zeta Potential. With the most relevant data collected, sonication energies of 190, 390 and 490 J/g, at 10 mM were selected at the first and the fourth week of storage to obtain Portland cement specimens. Finally, we found an improvement of the mechanical properties of the samples built with Portland cement and solutions stored for one and four weeks; it can be concluded that the MWCNTs improved the hydration period.


2006 ◽  
Vol 19 (5) ◽  
pp. 282-285 ◽  
Author(s):  
Weeranuj Yamreudeewong ◽  
Eric Kurt Dolence ◽  
Deborah Pahl

The stability of donepezil in an extemporaneously prepared oral liquid was studied. An aqueous liquid formulation of donepezil was prepared by reconstituting the powder from triturated 5-mg tablets with equal amounts of deionized water and 70% sorbitol solution with an expected donepezil concentration of 1 mg/mL. Polyethylene terephthalate plastic bottles containing donepezil liquid preparation were stored at ambient room temperature (22° C-26° C) and in the refrigerator (4° C-8° C). After a storage time of 1, 2, 3, and 4 weeks, donepezil liquid samples were analyzed in triplicate for donepezil concentrations by high-performance liquid chromatography. The concentrations of donepezil were found to be within the acceptable limit (± 10% of the initial concentration) in all test samples, which indicated that donepezil liquid preparation was stable at room temperature and in the refrigerator for up to 4 weeks. In addition, our study findings indicated that there was no microbial growth in the extemporaneously prepared donepezil liquid preparation after a storage period of 4 weeks in the refrigerator. In summary, the results of our study revealed that donepezil is stable (no significant loss of donepezil concentration and no microbial growth) in an extemporaneously prepared oral liquid when stored in the refrigerator for up to 4 weeks.


Sign in / Sign up

Export Citation Format

Share Document