Optimization of highly sensitive YAG:Cr3+,Nd3+ nanocrystal-based luminescent thermometer operating in an optical window of biological tissues

2017 ◽  
Vol 19 (10) ◽  
pp. 7343-7351 ◽  
Author(s):  
L. Marciniak ◽  
A. Bednarkiewicz ◽  
J. Drabik ◽  
K. Trejgis ◽  
W. Strek

The highest relative sensitivity of YAG:Cr3+,Nd3+ luminescent thermometers in physiological temperature range was 3.48% K−1.

Nanomaterials ◽  
2020 ◽  
Vol 10 (3) ◽  
pp. 421 ◽  
Author(s):  
Kamila Maciejewska ◽  
Blazej Poźniak ◽  
Marta Tikhomirov ◽  
Adrianna Kobylińska ◽  
Łukasz Marciniak

Herein, a novel synthesis method of colloidal GdPO4:Mn2+,Eu3+ nanoparticles for luminescent nanothermometry is proposed. XRD, TEM, DLS, and zeta potential measurements confirmed the crystallographic purity and reproducible morphology of the obtained nanoparticles. The spectroscopic properties of GdPO4:Mn2+,Eu3+ with different amounts of Mn2+ and Eu3+ were analyzed in a physiological temperature range. It was found that GdPO4:1%Eu3+,10%Mn2+ nanoparticles revealed extraordinary performance for noncontact temperature sensing with relative sensitivity SR = 8.88%/°C at 32 °C. Furthermore, the biocompatibility and safety of GdPO4:15%Mn2+,1%Eu3+ was confirmed by cytotoxicity studies. These results indicated that colloidal GdPO4 doped with Mn2+ and Eu3+ is a very promising candidate as a luminescent nanothermometer for in vitro applications.


2016 ◽  
Vol 4 (24) ◽  
pp. 5559-5563 ◽  
Author(s):  
Lukasz Marciniak ◽  
Artur Bednarkiewicz ◽  
Diana Kowalska ◽  
Wieslaw Strek

A new type of luminescent thermometer based on highly temperature dependent d–d Cr3+ transitions related to barely temperature dependent f–f Nd3+ transitions for bio-application is reported for the first time, showing exceptionally high sensitivity.


2004 ◽  
Vol 396 (1-6) ◽  
pp. 258-259 ◽  
Author(s):  
A. A. Kudryavtsev ◽  
V. P. Lavrovskaya ◽  
I. I. Popova ◽  
E. I. Lezhnev ◽  
L. M. Chailakhyan

Photonics ◽  
2018 ◽  
Vol 5 (4) ◽  
pp. 40 ◽  
Author(s):  
Sohel Rana ◽  
Nirmala Kandadai ◽  
Harish Subbaraman

In this paper, a high sensitivity, polarization preserving photonic crystal fiber (PCF), based on circular air holes for sensing in the terahertz (THz) band, is presented. The finite element method, a practical and precise computational technique for describing the interactions between light and matter, is used to compute the modal properties of the designed fiber. For the designed PCF, comprising of circular air holes in both the cladding and in the porous core, a relative sensitivity of 73.5% and a high birefringence of 0.013 are achieved at 1.6 THz. The all circular air-hole structure, owing to its simplicity and compatibility with the current fiber draw technique for PCF fabrication, can be realized practically. It is anticipated that the designed fiber can be employed in applications such as detection of biological samples and toxic chemicals, imaging, and spectroscopy.


2018 ◽  
Vol 6 (41) ◽  
pp. 11178-11183 ◽  
Author(s):  
Yan Gao ◽  
Yao Cheng ◽  
Tao Hu ◽  
Zeliang Ji ◽  
Hang Lin ◽  
...  

This study highlights a highly sensitive dual-mode optical thermometer Pr3+:Gd2ZnTiO6 for thermal readings over a wide range of temperature.


2014 ◽  
Vol 2014 (1) ◽  
pp. 000500-000504 ◽  
Author(s):  
Francy J. Akkara ◽  
Uday S. Goteti ◽  
Richard C. Jaeger ◽  
Michael C. Hamilton ◽  
Michael J. Palmer ◽  
...  

In certain applications, IC packages may be exposed to extreme temperatures and knowledge of thermally induced stress aids the prediction of performance degradation or failure of the IC. In the devices that are used in extreme conditions, the stress is caused mainly by the mismatch in expansion of various materials triggered by the different coefficients of thermal expansion. This work performed in this study is conducted using NMOS current mirror circuits that are cycled through a wide temperature range of −180°C to 80°C. These circuits are highly sensitive to stress and provide well-localized measurements of shear stress. The sensors are fabricated in such a way that the effects of certain stress components are isolated. These sensors are also temperature compensated so that only the effect of mechanical stress components is observed and changes in device performance due to temperature changes are minimal. Current readings obtained from the sensors are used to extract the shear stress component. Finite element simulations, using expected materials performance parameter information were also performed for similar packages and these results are compared to the measured results.


2019 ◽  
Vol 29 (2) ◽  
pp. 135-142 ◽  
Author(s):  
Richard H. Ellis

AbstractThe long-standing hypothesis that seed quality improves during seed filling, is greatest at the end of seed filling, and declines thereafter (because seed deterioration was assumed to begin then), provided a template for research in seed quality development. It was rejected by investigations where seed quality was shown to improve throughout both seed development and maturation until harvest maturity, before seed deterioration was first observed. Several other temporal patterns of seed quality development and decline have also been reported. These are portrayed and compared. The assessment suggests that the original hypothesis was too simple, because it combined several component hypotheses: (a) the seed improvement (only) phase ends before seed deterioration (only) commences; (b) there is only a brief single point in time during seed development and maturation when, in all circumstances, seed quality is maximal; (c) the seed quality improvement phase coincides perfectly with seed filling, with deterioration only post-seed filling. It is concluded that the search for the single point of maximum seed quality was a false quest because (a) seed improvement and deterioration may cycle (sequentially if not simultaneously) during seed development and maturation; (b) the relative sensitivity of the rates of improvement and deterioration to environment may differ; (c) the period of maximum quality may be brief or extended. Hence, when maximum quality is first attained, and for how long it is maintained, during seed development and maturation varies with genotype and environment. This is pertinent to quality seed production in current and future climates as it will be affected by climate change and a likelihood of more frequent coincidence of brief periods of extreme temperatures with highly sensitive phases of seed development and maturation. This is a possible tipping point for food security and for ecological diversity.


2020 ◽  
Vol 306 ◽  
pp. 112818 ◽  
Author(s):  
V. Bardik ◽  
Anatoliy I. Fisenko ◽  
Salvatore Magazu ◽  
Nikolay P. Malomuzh

2019 ◽  
Vol 55 (24) ◽  
pp. 3509-3512 ◽  
Author(s):  
Sen Liang ◽  
Yuan Wang ◽  
Xueke Wu ◽  
Min Chen ◽  
Lixuan Mu ◽  
...  

We report here an ultrasensitive ratiometric fluorescent thermometer (RFT) based on the frustrated static excimers (FSEs) of DEH-PDI (N,N′-di(2-ethylhexyl)-3,4,9,10-perylenetetracarboxylic diimide) in the physiological temperature range.


Sign in / Sign up

Export Citation Format

Share Document