scholarly journals Multi-chamber microfluidic platform for high-precision skin permeation testing

Lab on a Chip ◽  
2017 ◽  
Vol 17 (9) ◽  
pp. 1625-1634 ◽  
Author(s):  
M. Alberti ◽  
Y. Dancik ◽  
G. Sriram ◽  
B. Wu ◽  
Y. L. Teo ◽  
...  

We validated a novel microfluidic permeation array for high-precision and high-throughput skin penetration and toxicity testing or screening of chemicals.

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Pajaree Sakdiset ◽  
Yuki Kitao ◽  
Hiroaki Todo ◽  
Kenji Sugibayashi

In this study, we developed a technique for high-throughput screening (HTS) of skin penetration-enhancers using stratum corneum lipid liposomes (SCLLs). A fluorescent marker, sodium fluorescein (FL), entrapped in SCLLs was prepared to provide a preliminary evaluation of the effect of different concentrations of ethanol on the disruption effect of SCLLs, which is an alternative for skin penetration-enhancing effects. In addition, SCLLs containing a fluorescent probe (DPH, TMA-DPH, or ANS) were also prepared and utilized to investigate SCLL fluidity. The results using SCLL-based techniques were compared with conventional skin permeation and skin impedance test using hairless rat skin. The obtained correlations were validated between FL leakage, SCLL fluidity with various probes, or skin impedance and increases in the skin permeation enhancement ratio (ER) of caffeine as a model penetrant. As a result, FL leakage and SCLL fluidity using ANS were considered to be good indices for the skin penetration-enhancing effect, suggesting that the action of ethanol on the SC lipid and penetration-enhancing is mainly on the polar head group of intercellular lipids. In addition, this screening method using SCLL could be utilized as an alternative HTS technique for conventional animal tests. Simultaneously, the method was found to be time-saving and sensitive compared with a direct assay using human and animal skins.


2020 ◽  
Vol 17 (4) ◽  
pp. 270-278
Author(s):  
Maha Nasr ◽  
Rawan Al-Karaki

Nanotechnology is currently a hot topic in dermatology and nutraceutical/cosmeceutical delivery, owing to the advantages it provides in terms of enhancing the skin permeation of drugs, as well as increasing their therapeutic efficacy in the treatment of different dermatological diseases. There is also a great interest in the topical delivery of nutraceuticals; which are natural compounds with both therapeutic and cosmetic benefits, in order to overcome the side effects of topically applied chemical drugs. Quercetin is a key nutraceutical with topical antioxidant and anti-inflammatory properties which was reported to be effective in the treatment of different dermatological diseases, however, its topical therapeutic activity is hindered by its poor skin penetration. This review highlights the topical applications of quercetin, and summarizes the nanocarrier-based solutions to its percutaneous delivery challenges.


Cytotherapy ◽  
2021 ◽  
Vol 23 (5) ◽  
pp. S97
Author(s):  
J. Bell ◽  
Y. Huang ◽  
S. Yung ◽  
H. Qazi ◽  
C. Hernandez ◽  
...  

2021 ◽  
Vol 7 (6) ◽  
pp. eabe3902
Author(s):  
Martin Rieu ◽  
Thibault Vieille ◽  
Gaël Radou ◽  
Raphaël Jeanneret ◽  
Nadia Ruiz-Gutierrez ◽  
...  

While crucial for force spectroscopists and microbiologists, three-dimensional (3D) particle tracking suffers from either poor precision, complex calibration, or the need of expensive hardware, preventing its massive adoption. We introduce a new technique, based on a simple piece of cardboard inserted in the objective focal plane, that enables simple 3D tracking of dilute microparticles while offering subnanometer frame-to-frame precision in all directions. Its linearity alleviates calibration procedures, while the interferometric pattern enhances precision. We illustrate its utility in single-molecule force spectroscopy and single-algae motility analysis. As with any technique based on back focal plane engineering, it may be directly embedded in a commercial objective, providing a means to convert any preexisting optical setup in a 3D tracking system. Thanks to its precision, its simplicity, and its versatility, we envision that the technique has the potential to enhance the spreading of high-precision and high-throughput 3D tracking.


Lab on a Chip ◽  
2017 ◽  
Vol 17 (19) ◽  
pp. 3264-3271 ◽  
Author(s):  
Hesam Parsa ◽  
Bryan Z. Wang ◽  
Gordana Vunjak-Novakovic

Currentin vitromodels fall short in deciphering the mechanisms of cardiac hypertrophy induced by volume overload.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1372
Author(s):  
Chun-Yin Yang ◽  
Pao-Hsien Huang ◽  
Chih-Hua Tseng ◽  
Feng-Lin Yen

Antioxidants from plant extracts are often used as additives in skincare products to prevent skin problems induced by environmental pollutants. Artocarpus communis methanol extract (ACM) has many biological effects, such as antioxidant, anti-inflammatory, wound healing, and photoprotective effects; however, the poor water solubility of raw ACM has limited its applications in medicine and cosmetics. Topical antioxidant nanoparticles are one of the drug-delivery systems for overcoming the poor water solubility of antioxidants for increasing their skin penetration. The present study demonstrated that ACM-loaded hydroxypropyl-β-cyclodextrin and polyvinylpyrrolidone K30 nanoparticles (AHP) were successfully prepared and could effectively increase the skin penetration of ACM through changing the physicochemical characteristics of raw ACM, including reducing the particle size, increasing the surface area, and inducing amorphous transformation. Our results also revealed that AHP had significantly better antioxidant activity than raw ACM for preventing photocytotoxicity because the AHP formulation increased the cellular uptake of the ACM in UVB-irradiated HaCaT keratinocytes. In conclusion, our results suggest that AHP may be used as a good topical antioxidant nanoparticle for delivering ACM into deep layers of the skin for preventing UVB-induced skin problems.


Author(s):  
Maura C. Kibbey ◽  
David MacAllan ◽  
James W. Karaszkiewicz

IGEN's ORIGEN® technology, which is based on electrochemiluminescence, has been adopted by a number of research and bioanalytical laboratories who have recognized its exquisite sensitivity, high precision, wide dynamic range, and flexibility in formatting a wide variety of applications. IGEN's M-SERIES™ marks the introduction of the second generation of detection systems employing the ORIGEN technology specifically repackaged to address the needs of the high throughput laboratories involved in drug discovery. Assays are formatted without wash steps. Users realize the high performance of a heterogeneous technology with the convenience of a homogeneous format. The M-SERIES platform can address enzymatic assays (kinases, proteases, helicases, etc.), receptor-ligand or protein-protein assays, immunoassays, quantitation of nucleic acids, as well as other applications. Recent assay formats will be explored in detail.


Author(s):  
Nadine Candoni ◽  
Romain Grossier ◽  
Mehdi Lagaize ◽  
Stéphane Veesler

This review compares droplet-based microfluidic systems used to study crystallization fundamentals in chemistry and biology. An original high-throughput droplet-based microfluidic platform is presented. It uses nanoliter droplets, generates a chemical library, and directly solubilizes powder, thus economizing both material and time. It is compatible with all solvents without the need for surfactant. Its flexibility permits phase diagram determination and crystallization studies (screening and optimizing experiments) and makes it easy to use for nonspecialists in microfluidics. Moreover, it allows concentration measurement via ultraviolet spectroscopy and solid characterization via X-ray diffraction analysis.


Sign in / Sign up

Export Citation Format

Share Document