Kinetics of FeIIIEDTA complex reduction with iron powder under aerobic conditions

RSC Advances ◽  
2016 ◽  
Vol 6 (44) ◽  
pp. 38416-38423 ◽  
Author(s):  
Feiqiang He ◽  
Xianhe Deng ◽  
Min Chen

The kinetic model of FeIIIEDTA complex reduction with iron powder under aerobic condition is deduced and validated. It was .

1991 ◽  
Vol 56 (10) ◽  
pp. 2020-2029
Author(s):  
Jindřich Leitner ◽  
Petr Voňka ◽  
Josef Stejskal ◽  
Přemysl Klíma ◽  
Rudolf Hladina

The authors proposed and treated quantitatively a kinetic model for deposition of epitaxial GaAs layers prepared by reaction of trimethylgallium with arsine in hydrogen atmosphere. The transport of gallium to the surface of the substrate is considered as the controlling process. The influence of the rate of chemical reactions in the gas phase and on the substrate surface on the kinetics of the deposition process is neglected. The calculated dependence of the growth rate of the layers on the conditions of the deposition is in a good agreement with experimental data in the temperature range from 600 to 800°C.


2021 ◽  
Vol 13 (8) ◽  
pp. 4246
Author(s):  
Shih-Wei Yen ◽  
Wei-Hsin Chen ◽  
Jo-Shu Chang ◽  
Chun-Fong Eng ◽  
Salman Raza Naqvi ◽  
...  

This study investigated the kinetics of isothermal torrefaction of sorghum distilled residue (SDR), the main byproduct of the sorghum liquor-making process. The samples chosen were torrefied isothermally at five different temperatures under a nitrogen atmosphere in a thermogravimetric analyzer. Afterward, two different kinetic methods, the traditional model-free approach, and a two-step parallel reaction (TPR) kinetic model, were used to obtain the torrefaction kinetics of SDR. With the acquired 92–97% fit quality, which is the degree of similarity between calculated and real torrefaction curves, the traditional method approached using the Arrhenius equation showed a poor ability on kinetics prediction, whereas the TPR kinetic model optimized by the particle swarm optimization (PSO) algorithm showed that all the fit qualities are as high as 99%. The results suggest that PSO can simulate the actual torrefaction kinetics more accurately than the traditional kinetics approach. Moreover, the PSO method can be further employed for simulating the weight changes of reaction intermediates throughout the process. This computational method could be used as a powerful tool for industrial design and optimization in the biochar manufacturing process.


Processes ◽  
2021 ◽  
Vol 9 (3) ◽  
pp. 551
Author(s):  
Jorge López-Beceiro ◽  
Ana María Díaz-Díaz ◽  
Ana Álvarez-García ◽  
Javier Tarrío-Saavedra ◽  
Salvador Naya ◽  
...  

A kinetic model is proposed to fit isothermal thermogravimetric data obtained from cellulose in an inert atmosphere at different temperatures. The method used here to evaluate the model involves two steps: (1) fitting of single time-derivative thermogravimetric curves (DTG) obtained at different temperatures versus time, and (2) fitting of the rate parameter values obtained at different temperatures versus temperature. The first step makes use of derivative of logistic functions. For the second step, the dependence of the rate factor on temperature is evaluated. That separation of the curve fitting from the analysis of the rate factor resulted to be very flexible since it proved to work for previous crystallization studies and now for thermal degradation of cellulose.


2005 ◽  
Vol 11 (2) ◽  
pp. 59-62 ◽  
Author(s):  
Dragisa Savic ◽  
Miodrag Lazic ◽  
Vlada Veljkovic ◽  
Miroslav Vrvic

The batch oxidation kinetics of ferrous iron by Acidithiobacillus ferrooxidans were examined at different oxygen transfer rates and pH in an aerated stirred tank and a bubble column. The microbial growth, oxygen consumption rate and ferrous and ferric iron were monitored during the biooxidation. A kinetic model was established on the basis of the Michaelis-Menten kinetic equation for bacterial growth and the constants estimated from experimental data (maximum specific growth rate 0.069 h-1, saturation constant 2.9 g/dm3, and biomass yield coefficient based on ferrous iron 0.003 gd.w./gFe). Values calculated from the model agreed well with the experimental ones regardless of the bioreactor type and pH conditions.


1970 ◽  
Vol 9 (6) ◽  
pp. 442-446
Author(s):  
I. D. Radomysel'skii ◽  
A. V. Zborovskii

2020 ◽  
Vol 22 (26) ◽  
pp. 14489-14502 ◽  
Author(s):  
Maria Carta ◽  
Evelina Colacino ◽  
Francesco Delogu ◽  
Andrea Porcheddu

To help understanding the mechanisms underlying mechanochemical transformations, we propose a kinetic model that relates macroscopic and microscopic scales while accounting for the statistical nature of the mechanical processing of powder.


2020 ◽  
Vol 165 ◽  
pp. 104961
Author(s):  
Seungjae Sim ◽  
Won Bae Kong ◽  
Jonghyeon Kim ◽  
Jimoon Kang ◽  
Hwi-Sung Lee ◽  
...  

2019 ◽  
Vol 4 (3) ◽  
pp. 490-506 ◽  
Author(s):  
Matteo Pelucchi ◽  
Carlo Cavallotti ◽  
Alberto Cuoci ◽  
Tiziano Faravelli ◽  
Alessio Frassoldati ◽  
...  

A comprehensive kinetic model for the pyrolysis and combustion of substituted phenolic species, key components of fast pyrolysis bio-oils.


Sign in / Sign up

Export Citation Format

Share Document