scholarly journals Formation of reactive nitrogen species including peroxynitrite in physiological buffer exposed to cold atmospheric plasma

RSC Advances ◽  
2016 ◽  
Vol 6 (82) ◽  
pp. 78457-78467 ◽  
Author(s):  
Fanny Girard ◽  
Vasilica Badets ◽  
Sylvie Blanc ◽  
Kristaq Gazeli ◽  
Laurent Marlin ◽  
...  

Cold Atmospheric Plasmas (CAPs) are increasingly used for biomedical applications, their various reactive components must be then better determined. We demonstrate that peroxynitrite (ONOO−) is effectively a major reactive species generated by CAPs.

2021 ◽  
Author(s):  
Cecilia Mariel Gallego ◽  
Agostina Mazzeo ◽  
Paola Vargas ◽  
Sebastián Suárez ◽  
Juan Pellegrino ◽  
...  

HNO (nitroxyl, azanone), joined the ‘biologically relevant reactive nitrogen species’ family in the 2000s. Azanone is impossible to store due to its high reactivity and inherent low stability. Consequently, its...


Nanoscale ◽  
2021 ◽  
Author(s):  
Rachael Knoblauch ◽  
Chris Geddes

While the utility of reactive oxygen species in photodynamic therapies for both cancer treatments and antimicrobial applications has received much attention, the inherent potential of reactive nitrogen species (RNS) including...


Processes ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 249
Author(s):  
Zhitong Chen ◽  
Richard Obenchain ◽  
Richard E. Wirz

Conventional plasma jets for biomedical applications tend to have several drawbacks, such as high voltages, high gas delivery, large plasma probe volume, and the formation of discharge within the organ. Therefore, it is challenging to employ these jets inside a living organism’s body. Thus, we developed a single-electrode tiny plasma jet and evaluated its use for clinical biomedical applications. We investigated the effect of voltage input and flow rate on the jet length and studied the physical parameters of the plasma jet, including discharge voltage, average gas and subject temperature, and optical emissions via spectroscopy (OES). The interactions between the tiny plasma jet and five subjects (de-ionized (DI) water, metal, cardboard, pork belly, and pork muscle) were studied at distances of 10 mm and 15 mm from the jet nozzle. The results showed that the tiny plasma jet caused no damage or burning of tissues, and the ROS/RNS (reactive oxygen/nitrogen species) intensity increased when the distance was lowered from 15 mm to 10 mm. These initial observations establish the tiny plasma jet device as a potentially useful tool in clinical biomedical applications.


2021 ◽  
Author(s):  
Cristina Parisi ◽  
Mariacristina Failla ◽  
Aurore Fraix ◽  
Luca Menilli ◽  
Francesca Moret ◽  
...  

The generation of reactive oxygen species (ROS) and reactive nitrogen species (RNS) as “unconventional” therapeutics with precise spatiotemporal control by using light stimuli may open entirely new horizons for innovative...


Antioxidants ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 466
Author(s):  
Rachid Skouta

Maintaining the physiological level of reactive oxygen species (ROS) and reactive nitrogen species (RNS) in the body is highly important in the fight against radical species in the context of human health [...]


2019 ◽  
Vol 52 (19) ◽  
pp. 195201 ◽  
Author(s):  
Yeon-Ho Im ◽  
Zilan Xiong ◽  
Daniel T Elg ◽  
David B Graves

Hepatology ◽  
2014 ◽  
Vol 60 (2) ◽  
pp. 687-699 ◽  
Author(s):  
Lei Gao ◽  
Yingchun Zhou ◽  
Weichao Zhong ◽  
Xiaohua Zhao ◽  
Chun Chen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document