Effect of alloying on thermal conductivity and thermoelectric properties of CoAsS and CoSbS

2017 ◽  
Vol 19 (36) ◽  
pp. 24928-24933 ◽  
Author(s):  
Prabhjot Kaur ◽  
Chandan Bera

A fundamental understanding of the rational design of “Pb” and “Te” free metal chalcogenide alloys, based on the abundant materials CoAsxSb(1−x)S, for both p-type and n-type highly efficient thermoelectric materials is explored.

2005 ◽  
Vol 886 ◽  
Author(s):  
Takao Mori

ABSTRACTNovel rare earth boron icosahedral compounds are investigated as potential high temperature thermoelectric materials. REB50-type compounds and a homologous series of RE-B-C(N) compounds were synthesized and the thermal conductivity and thermoelectric properties measured. Seebeck coefficients in excess of 200 μV/K are observed at temperatures above 1000 K for the REB50-type compounds. Strikingly, n-type behavior was observed for REB22C2N and REB17CN. Up to now, non-doped B12 icosahedral compounds like boron carbide have all been p-type. The discovery of an n-type compound is extremely important in terms of the potential development of this class of compounds as viable thermoelectric materials. Low thermal conductivities of κ < 0.03 W/cm/K at room temperature was observed for these rare earth boron cluster compounds. In comparison among the homologous series in which there are rare earth and B6 octahedra layers separated by an increasing number of B12 icosahedra layers, we observe that the thermal conductivity actually increases as the number of boron cluster layers increases. We find that the rare earth B12 icosahedral cluster compounds in which RE atoms occupy voids among the clusters generally appear to have lower thermal conductivity than boron cluster compounds which do not contain RE atoms.


2005 ◽  
Vol 297-300 ◽  
pp. 875-880
Author(s):  
Cheol Ho Lim ◽  
Ki Tae Kim ◽  
Yong Hwan Kim ◽  
Dong Choul Cho ◽  
Young Sup Lee ◽  
...  

P-type Bi0.5Sb1.5Te3 compounds doped with 3wt% Te were fabricated by spark plasma sintering and their mechanical and thermoelectric properties were investigated. The sintered compounds with the bending strength of more than 50MPa and the figure-of-merit 2.9×10-3/K were obtained by controlling the mixing ratio of large powders (PL) and small powders (PS). Compared with the conventionally prepared single crystal thermoelectric materials, the bending strength was increased up to more than three times and the figure-of-merit Z was similar those of single crystals. It is expected that the mechanical properties could be improved by using hybrid powders without degradation of thermoelectric properties.


2021 ◽  
Author(s):  
Lijun Zhao ◽  
Mingyuan Wang ◽  
Jian Yang ◽  
Jiabin Hu ◽  
Yuan Zhu ◽  
...  

Abstract Cu3SbSe4, featuring its earth-abundant, cheap, nontoxic and environmentally-friendly constituent elements, can be considered as a promising intermediate temperature thermoelectric (TE) material. Herein, a series of p-type Bi-doped Cu3Sb1 − xBixSe4 (x = 0-0.04) samples were fabricated through melting and hot pressing (HP) process, and the effects of isovalent Bi-doping on their TE properties were comparatively investigated by experimental and computational methods. TEM analysis indicates that Bi-doped samples consist of Cu3SbSe4 and Cu2 − xSe impurity phases, which is in good agreement with the results of XRD, SEM and XPS. For Bi-doped samples, the reduced electrical resistivity (ρ) caused by the optimized carrier concentrations and enhanced Seebeck coefficient derived from the densities of states near the Fermi level give rise to a high power factor of ~ 1000 µWcm− 1K− 2 at 673 K for the Cu3Sb0.985Bi0.015Se4 sample. Additionally, the multiscale defects of Cu3SbSe4-based materials involving point defects, nanoprecipitates, amorphous phases and grain boundaries can strongly scatter phonons to depress lattice thermal conductivity (κlat), resulting in a low κlat of ~ 0.53 Wm− 1K− 1 and thermal conductivity (κtot) of ~ 0.62 Wm− 1K− 1 at 673 K for the Cu3Sb0.98Bi0.02Se4 sample. As a consequence, a maximum ZT value ~ 0.95 at 673 K is obtained for the Cu3Sb0.985Bi0.015Se4 sample, which is ~ 1.9 times more than that of pristine Cu3SbSe4. This work shows that isovalent heavy-element doping is an effective strategy to optimize thermoelectric properties of copper-based chalcogenides.


2019 ◽  
Vol 64 (14) ◽  
pp. 1024-1030 ◽  
Author(s):  
Tiezheng Fu ◽  
Jiazhan Xin ◽  
Tiejun Zhu ◽  
Jiajun Shen ◽  
Teng Fang ◽  
...  

2012 ◽  
Vol 512-515 ◽  
pp. 1651-1654 ◽  
Author(s):  
Yu Kun Xiao ◽  
Zhi Xiang Li ◽  
Jun Jiang ◽  
Sheng Hui Yang ◽  
Ting Zhang ◽  
...  

P-type BiSbTe/RuO2 composite was fabricated using a combined process of melting and spark plasma sintering. The XRD patterns showed that RuO2 reacted with the matrix for the RuO2 content of 1.0 wt% and 4.0 wt% samples. The measured thermoelectric properties showed that the highest electrical conductivity was obtained for the sample with 2.0 wt% RuO2. The power factor (α2σ/κ) decreased with the increase of RuO2 below 450 K. The lattice thermal conductivity was lower than that of BiSbTe over the whole temperature range for BiSbTe/2.0 wt% RuO2.


2018 ◽  
Vol 773 ◽  
pp. 145-151
Author(s):  
Min Soo Park ◽  
Gook Hyun Ha ◽  
Hye Young Koo ◽  
Yong Ho Park

The Bi–Te thermoelectric system shows an excellent figure of merit (ZT) near room temperature. Research on increasing the ZT value for n‑type Bi–Te is imperative because the thermoelectric properties of this compound are inferior to those of the p-type material. For this purpose, n-type Bi2Te3-ySey powders with various amounts of Se dopant (0.3 ≤ y ≤ 0.6) were synthesized by a vacuum melting-grinding process to improve the physical properties. The ZT value of the sintered bodies was investigated in the temperature range of 298–423 K with regard to the electrical and thermal characteristics. As the Se content increased, the electrical conductivity decreased owing to a reduction in the carrier concentration, which improved the overall value of ZT. The thermal conductivity clearly decreased as the Se content increased in the temperature range of 298–373 K due to increased alloy scattering, as well as a reduction in the lattice thermal conductivity caused by crystal grain boundary scattering. At room temperature, Bi2Te2.7Se0.3 (y = 0.3) exhibited the highest ZT of 0.85. At increased temperatures, the ZT value was highest for Bi2Te2.55Se0.45 (y = 0.45), indicating that the optimal effect of the Se dopants varies depending on the temperature range.


2010 ◽  
Vol 650 ◽  
pp. 137-141
Author(s):  
Qing Sen Meng ◽  
Wen Hao Fan ◽  
L.Q. Wang ◽  
L.Z. Ding

Iron disilicide (-FeSi2, and -FeSi2+Cu0.1wt%) were prepared by a field-activated pressure assisted synthesis(FAPAS) method from elemental powders and the thermoelectric properties were investigated. The average grain size of these products is about 0.3m. The thermal conductivity of these materials is 3-4wm-1K-1in the temperature range 300-725K. These products’ figure of merit is 28.50×10-4 in the temperature range 330-450K. The additions of Cu promote the phase transformation of -Fe2Si5 + -FeSi → β-FeSi2 and shorten the annealing time. It is proved that FAPAS is a benign and rapid process for sintering of -FeSi2 thermoelectric materials.


2007 ◽  
Vol 1044 ◽  
Author(s):  
Shinsuke Yamanaka ◽  
Ken Kurosaki ◽  
Anek Charoenphakdee ◽  
Hideaki Mastumoto ◽  
Hiroaki Muta

AbstractWith the goal of developing high-performance bulk thermoelectric materials, we have characterized ternary silver thallium tellurides. The ternary silver thallium tellurides exhibit extremely low thermal conductivity (<0.5 Wm−1K−1) and consequently their thermoelectric performance is excellent. Although the extremely low thermal conductivity materials, as typified by the ternary silver thallium tellurides, would be a new class of next-generation thermoelectric materials, thallium compounds are unsuitable for practical application because of their toxicity. Against such a background, we are currently exploring thallium-free thermoelectric materials with extremely low thermal conductivity. In this paper, we will briefly summarize the thermoelectric properties of ternary thallium tellurides obtained in our group. Further experiments aimed at improving the ZT of these materials will be presented. Finally, we will propose two candidates: Ag8GeTe6 and Ga2Te3 as thallium-free low thermal conductivity materials.


Author(s):  
А.И. Таранова ◽  
А.П. Новицкий ◽  
А.И. Воронин ◽  
С.В. Таскаев ◽  
В.В. Ховайло

In this work the results of an experimental study of Fe2Ti1-xVxSn alloys (x = 0; 0.06; 0.15; 0.2) are presented. According to the temperature dependencies of the electrical conductivity, Seebeck coefficient and thermal conductivity, it is established, that the studied compositions exhibit transport properties typical for semiconductors. The substitution of V at the Ti site leads to a change of the p-type electrical conductivity behavior to n-type; the pristine sample of Fe2TiSn has the best thermoelectric properties.


2021 ◽  
Author(s):  
◽  
Michael Ng

<p>Energy consumption worldwide is constantly increasing, bringing with it the demand for low cost, environmentally friendly and efficient energy technologies. One of these promising technologies is thermoelectrics in which electric power is harvested from waste heat energy. The efficiency of a thermoelectric device is determined by the dimensionless figure of merit ZT = σS²T/k where σ is the electrical conductivity, S is the thermopower, k is the thermal conductivity, and T is the average temperature. In this thesis we investigate the use of nanostructuring, which has been known to lead to significant reduction in the lattice thermal conductivity to maximise the figure of merit.  One of the most successful bulk thermoelectric materials is Bi₂Te₃, with a ZT of unity at room temperature. Here we investigate the effects of nanostructuring on the thermoelectric properties of Bi₂Te₃. Sub-100 nm ₂Te₃ nanoparticles were successfully synthesized and the figure of merit was found to be ZT ~ 5X10⁻⁵ at room temperature. The effect of a ligand exchange treatment to replace the long chain organic ligand on the as-synthesized nanoparticles with a short chain alkyl ligand was explored. After ligand exchange treatment with hydrazine the figure of merit of sub-100 nm Bi₂Te₃ was found to increase by two fold to ZT ~ 1X10⁻⁴ at room temperature. Overall the figure of merit is low compared to other nanostructured Bi₂Te₃, this was attributed to the extremely low electrical conductivity. The thermopower and thermal conductivity were found to be ~96 μVK⁻¹ and ~0.38 Wm⁻¹ K⁻¹ at 300 K respectively, which show improvements over other nanostructured Bi₂Te₃.  Further optimisation of the figure of merit was also investigated by incorporating Cu, Ni and Co dopants. The most successful of these attempts was Co in which 14.5% Co relative to Bi was successfully incorporated into sub-100 nm Bi₂Te₃. The figure of merit of nanostructured Bi₁.₇₁Co₀.₂₉Te₁.₇₁ alloy was found to increase by 40% to a ZT ~ 1.4X10⁻⁴ at room temperature. Although overall the figure of merit is low, the effect of Co alloying and hydrazine treatment shows potential as a route to optimise the figure of merit.  A potential novel material for thermoelectrics applications is inorganicorganic perovskite single crystals. Here we report a synthetic strategy to successfully grow large millimetre scale single crystals of MAPbBr₃₋xClx, FAPbBr₃₋xClx, and MAPb₁-xSnxBr₃ (MA = methylammonium and FA = formamidinium) using inverse temperature crystallisation (ITC) in a matter of days. This is the first reported case of mixed Br/Cl single crystals with a FA cation and mixed Pb/Sn based perovskites grown using ITC. The bandgap of these single crystals was successfully tuned by altering the halide and metal site composition. It was found that single crystals of FAPbBr₃₋xClx were prone to surface degradation with increased synthesis time. This surface degradation was observed to be reversible by placing the single crystals in an antisolvent such as chloroform.  A tentative model was proposed to analyse the IV characteristics of the single crystal perovskites in order to extract mobilities and diffusion lengths. The MAPbBr₃ and MAPbBr₂.₅Cl₀.₅ single crystal mobilities were found to be between 30-390 cm² V⁻¹ s⁻¹ and 10-100 cm² V⁻¹ s⁻¹ respectively, the diffusion lengths were found to be between 2-8 μm and 1-4 μm respectively. This is an improvement over polycrystalline thin film perovskites and comparable to other single crystal perovskites. The conductance of MAPb₁-xSnxBr₃ based perovskites was found to increase by 2 orders of magnitude even with just 1% of Sn incorporated. The thermal conductivity of MAPbBr₃ single crystals was found to be ~1.12 Wm⁻¹ K⁻¹ at room temperature which is reasonable low for single crystals, however no other thermoelectric properties could be measured due to the self cleaving nature of the single crystals with decreasing temperature and the high resistivity of the material.</p>


Sign in / Sign up

Export Citation Format

Share Document