scholarly journals Materials and toxicological approaches to study metal and metal-oxide nanoparticles in the model organism Caenorhabditis elegans

2017 ◽  
Vol 4 (5) ◽  
pp. 719-746 ◽  
Author(s):  
Laura Gonzalez-Moragas ◽  
Laura L. Maurer ◽  
Victoria M. Harms ◽  
Joel N. Meyer ◽  
Anna Laromaine ◽  
...  

The C. elegans biological responses to metal-based nanoparticles are reviewed. A cross-disciplinary workflow for nanoparticles screening in vivo is proposed.

2021 ◽  
Vol 394 (10) ◽  
pp. 1991-2002
Author(s):  
Junchao Luo ◽  
Yin Zhang ◽  
Senbo Zhu ◽  
Yu Tong ◽  
Lichen Ji ◽  
...  

AbstractThe current understanding of osteoarthritis is developing from a mechanical disease caused by cartilage wear to a complex biological response involving inflammation, oxidative stress and other aspects. Nanoparticles are widely used in drug delivery due to its good stability in vivo and cell uptake efficiency. In addition to the above advantages, metal/metal oxide NPs, such as cerium oxide and manganese dioxide, can also simulate the activity of antioxidant enzymes and catalyze the degradation of superoxide anions and hydrogen peroxide. Degrading of metal/metal oxide nanoparticles releases metal ions, which may slow down the progression of osteoarthritis by inhibiting inflammation, promoting cartilage repair and inhibiting cartilage ossification. In present review, we focused on recent research works concerning osteoarthritis treating with metal/metal oxide nanoparticles, and introduced some potential nanoparticles that may have therapeutic effects.


The Analyst ◽  
2012 ◽  
Vol 137 (21) ◽  
pp. 4902 ◽  
Author(s):  
Carlos Pérez-Campaña ◽  
Vanessa Gómez-Vallejo ◽  
Abraham Martin ◽  
Eneko San Sebastián ◽  
Sergio E. Moya ◽  
...  

Cells ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1966
Author(s):  
Rabin Dhakal ◽  
Mohammad Yosofvand ◽  
Mahsa Yavari ◽  
Ramzi Abdulrahman ◽  
Ryan Schurr ◽  
...  

Knowledge regarding complex radiation responses in biological systems can be enhanced using genetically amenable model organisms. In this manuscript, we reviewed the use of the nematode, Caenorhabditis elegans (C. elegans), as a model organism to investigate radiation’s biological effects. Diverse types of experiments were conducted on C. elegans, using acute and chronic exposure to different ionizing radiation types, and to assess various biological responses. These responses differed based on the type and dose of radiation and the chemical substances in which the worms were grown or maintained. A few studies compared responses to various radiation types and doses as well as other environmental exposures. Therefore, this paper focused on the effect of irradiation on C. elegans, based on the intensity of the radiation dose and the length of exposure and ways to decrease the effects of ionizing radiation. Moreover, we discussed several studies showing that dietary components such as vitamin A, polyunsaturated fatty acids, and polyphenol-rich food source may promote the resistance of C. elegans to ionizing radiation and increase their life span after irradiation.


Author(s):  
Merle Marie Nicolai ◽  
Barbara Witt ◽  
Andrea Hartwig ◽  
Tanja Schwerdtle ◽  
Julia Bornhorst

AbstractThe identification of genotoxic agents and their potential for genotoxic alterations in an organism is crucial for risk assessment and approval procedures of the chemical and pharmaceutical industry. Classically, testing strategies for DNA or chromosomal damage focus on in vitro and in vivo (mainly rodent) investigations. In cell culture systems, the alkaline unwinding (AU) assay is one of the well-established methods for detecting the percentage of double-stranded DNA (dsDNA). By establishing a reliable lysis protocol, and further optimization of the AU assay for the model organism Caenorhabditis elegans (C. elegans), we provided a new tool for genotoxicity testing in the niche between in vitro and rodent experiments. The method is intended to complement existing testing strategies by a multicellular organism, which allows higher predictability of genotoxic potential compared to in vitro cell line or bacterial investigations, before utilizing in vivo (rodent) investigations. This also allows working within the 3R concept (reduction, refinement, and replacement of animal experiments), by reducing and possibly replacing animal testing. Validation with known genotoxic agents (bleomycin (BLM) and tert-butyl hydroperoxide (tBOOH)) proved the method to be meaningful, reproducible, and feasible for high-throughput genotoxicity testing, and especially preliminary screening.


2021 ◽  
Author(s):  
KJ Sree ◽  
Mohan Vedhanayagam ◽  
Balachandran Unni Nair ◽  
Anandasadagopan Suresh kumar

Abstract Functionalized metal oxide nanoparticles cross-linked collagen scaffolds are widely used in skin regenerative applications because of their enhanced physico-chemical and biocompatibility properties. From the safety clinical trials point of view, there are no reports that have compared the effects of functionalized metal oxide nanoparticles mediated collagen scaffolds for in-vivo skin regenerative applications. In this work, Triethoxysilane - Poly (amido amine) dendrimer generation 3 (TES-PAMAM -G3 or G3) functionalized spherical shape metal oxide nanoparticles (MO NPs: ZnO, TiO2, Fe3O4, CeO2, and SiO2, Size: 12 -25 nm) cross-linked collagen scaffolds were prepared by using a self-assembly method. Triple helical conformation, pore size, mechanical strength and in-vitro cell viability of MO-TES-PAMAM-G3- collagen scaffolds were studied through different methods. The in-vivo skin regenerative proficiency of MO-TES-PAMAM-G3- collagen scaffolds were analysed by implanting the scaffold on wounds in Wistar Albino rats. The results demonstrated that MO-TES-PAMAM-G3- collagen scaffold showed superior skin regeneration properties than other scaffolds. The skin regenerative efficiency of MO NPs followed order: ZnO> TiO2> CeO2> SiO2> Fe3O4 NPs. This result can be attributed to higher mechanical strength, cell –viability and better antibacterial activity of ZnO-TES-PAMAM-G3-collagen scaffold lead to accelerate the skin regenerative properties in comparison to other metal oxide based collagen scaffolds.


2019 ◽  
Author(s):  
Jack W. Rutter ◽  
Tanel Ozdemir ◽  
Leonor M. Quintaneiro ◽  
Geraint Thomas ◽  
Filipe Cabreiro ◽  
...  

AbstractCaenorhabditis elegans has become a key model organism within biology. In particular, the transparent gut, rapid growing time and ability to create a defined gut microbiota make it an ideal candidate organism for understanding and engineering the host microbiota. Here we present the development of an experimental model which can be used to characterise whole-cell bacterial biosensors in vivo. A dual-plasmid sensor system responding to isopropyl β-D-1-thiogalactopyranoside was developed and fully characterised in vitro. Subsequently, we show the sensor was capable of detecting and reporting on changes in the intestinal environment of C. elegans after introducing exogenous inducer into the environment. The protocols presented here may be used for aiding the rational design of engineered bacterial circuits, primarily for diagnostic applications. In addition, the model system may serve to reduce the use of current animal models and aid in the exploration of complex questions within general nematode and host-microbe biology.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Elizabeth Moreno-Arriola ◽  
Noemí Cárdenas-Rodríguez ◽  
Elvia Coballase-Urrutia ◽  
José Pedraza-Chaverri ◽  
Liliana Carmona-Aparicio ◽  
...  

Caenorhabditis elegansis a powerful model organism that is invaluable for experimental research because it can be used to recapitulate most human diseases at either the metabolic or genomic levelin vivo. This organism contains many key components related to metabolic and oxidative stress networks that could conceivably allow us to increase and integrate information to understand the causes and mechanisms of complex diseases. Oxidative stress is an etiological factor that influences numerous human diseases, including diabetes.C. elegansdisplays remarkably similar molecular bases and cellular pathways to those of mammals. Defects in the insulin/insulin-like growth factor-1 signaling pathway or increased ROS levels induce the conserved phase II detoxification response via the SKN-1 pathway to fight against oxidative stress. However, it is noteworthy that, aside from the detrimental effects of ROS, they have been proposed as second messengers that trigger the mitohormetic response to attenuate the adverse effects of oxidative stress. Herein, we briefly describe the importance ofC. elegansas an experimental model system for studying metabolic disorders related to oxidative stress and the molecular mechanisms that underlie their pathophysiology.


Sign in / Sign up

Export Citation Format

Share Document