Tuning the molecular weight of polymeric amphiphiles as a tool to access micelles with a wide range of enzymatic degradation rates

2018 ◽  
Vol 54 (50) ◽  
pp. 6875-6878 ◽  
Author(s):  
Gadi Slor ◽  
Nitsan Papo ◽  
Uri Hananel ◽  
Roey J. Amir

Tuning the molecular weight of polymeric amphiphiles allows access to polymeric micelles with extremely diverse enzymatic degradation and disassembly rates.

Polymers ◽  
2021 ◽  
Vol 13 (2) ◽  
pp. 295
Author(s):  
Stephanie E. Doyle ◽  
Lauren Henry ◽  
Ellen McGennisken ◽  
Carmine Onofrillo ◽  
Claudia Di Bella ◽  
...  

Degradable bone implants are designed to foster the complete regeneration of natural tissue after large-scale loss trauma. Polycaprolactone (PCL) and hydroxyapatite (HA) composites are promising scaffold materials with superior mechanical and osteoinductive properties compared to the single materials. However, producing three-dimensional (3D) structures with high HA content as well as tuneable degradability remains a challenge. To address this issue and create homogeneously distributed PCL-nanoHA (nHA) scaffolds with tuneable degradation rates through both PCL molecular weight and nHA concentration, we conducted a detailed characterisation and comparison of a range of PCL-nHA composites across three molecular weight PCLs (14, 45, and 80 kDa) and with nHA content up to 30% w/w. In general, the addition of nHA results in an increase of viscosity for the PCL-nHA composites but has little effect on their compressive modulus. Importantly, we observe that the addition of nHA increases the rate of degradation compared to PCL alone. We show that the 45 and 80 kDa PCL-nHA groups can be fabricated via indirect 3D printing and have homogenously distributed nHA even after fabrication. Finally, the cytocompatibility of the composite materials is evaluated for the 45 and 80 kDa groups, with the results showing no significant change in cell number compared to the control. In conclusion, our analyses unveil several features that are crucial for processing the composite material into a tissue engineered implant.


2004 ◽  
Vol 49 (9) ◽  
pp. 257-265 ◽  
Author(s):  
C. Hepplewhite ◽  
G. Newcombe ◽  
D.R.U. Knappe

The adsorption of an odour compound common in drinking water, 2-methylisoborneol (MIB), was studied on two activated carbons in the presence of 13 well-characterised natural organic matter (NOM) solutions. It was found that, although the carbons and the NOM solutions had a wide range of characteristics, the major competitive mechanism was the same in all cases. The low molecular weight NOM compounds were the most competitive, participating in a direct competition with the MIB molecule for adsorption sites. Equivalent background concentration (EBC) calculations indicated a relatively low concentration of directly competing compounds in the NOM. Some evidence of pore restriction was also seen, with microporous carbons most affected by low molecular weight NOM, and mesoporous carbons impacted by the higher molecular weight compounds.


1998 ◽  
Vol 44 (12) ◽  
pp. 1115-1136 ◽  
Author(s):  
M J Butler ◽  
A W Day

The relationship of polyketide melanogenesis molecular biology to that of nonmelanin-producing pathways in a wide range of fungi and other organisms is discussed. Analytical methods and fundamental properties of melanins are discussed and fungal melanin properties are compared with those of animal and bacterial melanins. The enzymatic degradation of melanins by lignin peroxidases is described.Key words: fungal melanin, polyketide melanin, DHN melanin, melanin degradation, melanin properties, melanin analysis.


2012 ◽  
Vol 512-515 ◽  
pp. 2127-2130
Author(s):  
Li Huo ◽  
Cai Xia Dong

The mechanical properties were investigated of a series of PA-PEG thermalplastic elastomer based on PA1010 and polytetramethylene glycol (PEG) with varying hard and soft segment content. Dynamic mechanical measurements of these polymers have carried out over a wide range of temperatures. The block copolymers exhibit three peaks, designated as α, β and γ in the tanδ-temperature curve. The α transition shifts to higher temperature with increasing hard block molecular weight. However, at a constant hard molecular weight, the α transition shifts to higher temperature and the damping increases on increasing the soft segment molecular weight. DMA results show that the block copolymers exhibit a microphase separation structure and both soft and hard segments were found to be crystallizable. The degree of phase separation increases with increasing hard block molecular weight.


2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


2021 ◽  
Author(s):  
K Saleem ◽  
Pritha Dey ◽  
Charitha Sumeet ◽  
Mayur Bajaj ◽  
Y Geetika ◽  
...  

AbstractThis study attempts to identify the significant role played by the secondary structure of collagen-derived peptides that are involved in lipid peroxide quenching in food products. Collagen was extracted from the skin of Perch and swim bladder of Rohu at 45-78% efficiency. It was identified as type-I based on a high molecular weight (110kDa) and its ion-exchange elution profile. The collagen samples were enzymatically hydrolyzed and collagen hydrolysate (CH) was extracted with an efficiency of 0.67-0.74g/g of collagen. The CH samples displayed a molecular weight in the range of 8.2-9.7kDa and exhibited a higher abundance of charges resulting in higher solubility. The structural studies revealed that the CH peptides existed in polyproline-II helix and formed a mimic-triple helix in a wide range of pH. In neutral and alkaline pH, the mimic helices joined to form a hierarchical quasi-fibrillar network that was smaller than collagen fibrils but also more dynamic. The CH exhibited >95% degradation in 15h through simulated digestion. The CH were able to decrease peroxide formation by 84.5-98.9% in commercially available cod liver and almond oil and increased the shelf life of soya bean oil by a factor of 5 after 6 months of storage. The addition of CH to cultured cells quenched peroxide ions generated in situ and decreased stressor activity by a factor of 12. The reason behind the high efficacy of CH was deciphered to be the proximal charge stabilization by the quasi-fibrillar network, which allowed efficient peroxide quenching and long-term stability.


2021 ◽  
Vol 15 (1) ◽  
pp. 27-36
Author(s):  
V. V. Mykhaliuk ◽  
◽  
V. V. Havryliak ◽  

Background. Keratins are natural biopolymers with a wide range of applications in the field of biotechnology. Materials and Methods. Extraction of keratins was performed by a modified Nakamura method using 250 mM DTT. The protein concentration in the supernatant was determined by Bradford method. The protein composition was studied by their electro­phoretic separation in a polyacrylamide gel in the presence of sodium dodecyl sulfate. The films were made by casting. The surface characteristics of the films were determined using a scanning electron microscope REMMA-102. The elemental composition of the films was determined using an X-ray microanalyzer. Results. The protein concentration in the supernatant was 3.75 mg/mL. After using dithiothreitol in the extraction mixture, we obtained proteins of intermediate filaments with a molecular weight of 40–60 kDa and a low Sulfur content. In the low molecular weight region, we obtained keratin-associated proteins with a molecular weight of 10–30 kDa and a high content of Sulfur. These proteins belong to fibrillar proteins, which can be used as a matrix for the creation of new keratin-containing biocomposites with a wide range of applications in reparative medicine and tissue engineering. Based on the obtained keratin extract, polymer films with and without the addition of glycerol were made. Scanning electron microscopy revealed that glycerol provided the film structure with homogeneity and plasticity due to the accumulation of moisture after the fixation by water vapor. The X-ray microanalysis of films revealed such elements as Sodium, Silicon, Sulfur, Potassium. Among the detected elements, Sulfur has the largest share that is due to the large number of disulfide bonds in the keratin molecule. Conclusions. The polymer keratin films with the addition of glycerol demonstrated better mechanical properties and can be used in biomedicine.


2021 ◽  
Author(s):  
Amira Abdelrasoul

The low-pressure membrane applications are considered to be the most effective and sustainable methods of addressing environmental problems in treating water and wastewater that meets or exceed stringent environmental standards. Nevertheless, membrane fouling is one of the primary operational concerns that is currently hindering a more widespread application of ultrafiltration (UF) with a variety of contaminants. Membrane fouling leads to higher operating costs, higher energy demand, reduced membrane life time, and increased cleaning frequency. As a consequence, an efficient and well-planned UF process is becoming a necessity for consistent and long-term monetary returns. Examining the source and mechanisms of foulant attachment to the membrane’s surface is critical when it comes to the research of membrane fouling and its potential practical implementation. A mathematical model was developed in this study in order to predict the amount of fouling based on an analysis of particle attachments. This model was developed using both homogeneous and heterogeneous membranes, with a uniform and non-uniform pore sizes for the UF of simulated latex effluent with a wide range of particle size distribution. The objective of this mathematical model was to effectively identify and address the common shortcomings of previous fouling models, and to account for the existing chemical attachments in membrane fouling. The mathematical model resulting from this study was capable of accurately predicting the mass of fouling retained by the membrane and the increase in transmembrane pressure (TMP). In addition, predictive models of fouling attachments were derived and now form an extensive set of mathematical models necessary for the prediction of membrane fouling at a given operating condition, as well as, the various membrane surface charges. Polycarbonate and Polysulfone flat membranes, with pore sizes of 0.05 μm and a molecular weight cut off of 60,000 respectively, were used in the experimental designs under a constant feed flow rate and a cross-flow mode in UF of the simulated latex paint effluent. The TMP estimated from the model agreed with the experimentally measured values at different operating conditions, mostly within 5.0 - 8.0 % error, and up to 13.0% error for the uniform, and non-uniform pore size membranes, respectively. Furthermore, different types of membranes with a variety of molecular weight cut-off (MWCO) values were tested so as to evaluate the accuracy of the models for a generalized application. In addition , a power consumption model, incorporating fouling attachment as well as chemical and physical factors in membrane fouling, was developed in order to ensure accurate prediction and scale-up. Innovative remediation techniques were likewise developed and applied in order to minimize membrane fouling, enhance the membrane performance, and save energy. Fouling remediation methodologies included the pre-treating of the latex effluent, so as to limit its fouling propensity by using different types of surfactants as cationic and anionic, in addition to the pH change. The antifouling properties of the membranes were improved through the implementation of the membrane pH treatment and anionic surfactant treatment. Increasing the ionic strength of latex effluent or enhancing the membrane surface hydrophilicity facilitated a significant increase in the cumulative permeate flux, a substantial decrease in the total mass of fouling, and a noticeable decrease in the specific power consumption.


2012 ◽  
Vol 567 ◽  
pp. 123-126
Author(s):  
Teng Fei Shen ◽  
Man Geng Lu ◽  
Li Yan Liang

In this work, microporous membrane biomaterials based on high weight molecular polylactide (PLA) and low molecular weight poly(ethylene glycol) (PEG) using rapid solvent evaporation method were prepared and investigated. The effect of PEG segments added on the thermal and degradation behaviors was studied. According to the results, produced PLA/PEG biomaterial has lower glass transition temperature (Tg)in comparison with neat PLA. It was also found that the degradation rates of the PLA/PEG biomaterials were significantly increased with adding of PEG, which explained by increasing hydrophilic groups. For better porous fixation, CL-blocked polyisocyanate (CL-bp), which was synthesized from reaction of isophorone diisocyanate (IPDI) with dimethylol propionic acid (DMPA) and Trimethylolpropane (TMP) followed by addition of caprolactam (CL), were introduced. The microporous forms were observed by the scanning electron microscope (SEM), which showed the mean diameters of prepared PLA/PEG microporous were around 10μm.


Sign in / Sign up

Export Citation Format

Share Document