Bioaccumulation of silver nanoparticles in model wastewater biofilms

2018 ◽  
Vol 4 (8) ◽  
pp. 1163-1171 ◽  
Author(s):  
C. Walden ◽  
W. Zhang

Engineered nanoparticles are increasingly incorporated into consumer products and inevitably released into wastewater.

2018 ◽  
Vol 2 (08) ◽  
Author(s):  
Kayla Dean ◽  
Felicia Jefferson

Within the previous few years major advances in the development of nanotechnologies and practical application of artificial nanoparticles (NPs) and nanomaterials (NMs) have resulted. As society becomes further aware that the use of nanomaterials is ever growing in consumer products and their presence in the environment, critical interest on the impact of this emerging technology has grown. A major concern is whether the unknown risks of engineered nanoparticles, in particular, their impact on health and environment, outweighs their established benefits to society. The goal is to evaluate their potential toxicity in the environment. Silver nanoparticles exhibit an important effect on microbial processes in environmental exposures. This study provides a brief review over the current state-of-knowledge about AgNPs from various studies in this area, including the history, analysis, source, transport, fate, and potential risks of AgNPs. In order to fully investigate the transport and fate of AgNPs in the environment, appropriate methods for the pre-concentration, separation, and speciation of AgNPs should be developed, and analytical tools for the characterization and detection of AgNPs in complicated environmental studies must be incorporated.


The Analyst ◽  
2016 ◽  
Vol 141 (18) ◽  
pp. 5382-5389 ◽  
Author(s):  
Trang H. D. Nguyen ◽  
Peng Zhou ◽  
Azlin Mustapha ◽  
Mengshi Lin

Silver nanoparticles (Ag NPs) are one of the top five engineered nanoparticles that have been used in various products.


2018 ◽  
Vol 2 (10) ◽  
Author(s):  
Kayla Dean ◽  
Felicia Jefferson

Within the previous few years major advances in the development of nanotechnologies and practical application of artificial nanoparticles (NPs) and nanomaterials (NMs) have resulted. As society becomes further aware that the use of nanomaterials is ever growing in consumer products and their presence in the environment, critical interest on the impact of this emerging technology has grown. A major concern is whether the unknown risks of engineered nanoparticles, in particular, their impact on health and environment, outweighs their established benefits to society. The goal is to evaluate their potential toxicity in the environment. Silver nanoparticles exhibit an important effect on microbial processes in environmental exposures. This study provides a brief review over the current state-of-knowledge about AgNPs from various studies in this area, including the history, analysis, source, transport, fate, and potential risks of AgNPs. In order to fully investigate the transport and fate of AgNPs in the environment, appropriate methods for the pre-concentration, separation, and speciation of AgNPs should be developed, and analytical tools for the characterization and detection of AgNPs in complicated environmental studies must be incorporated.


Minerals ◽  
2021 ◽  
Vol 11 (4) ◽  
pp. 373
Author(s):  
Jonathan Suazo-Hernández ◽  
Erwin Klumpp ◽  
Nicolás Arancibia-Miranda ◽  
Patricia Poblete-Grant ◽  
Alejandra Jara ◽  
...  

Engineered nanoparticles (ENPs) present in consumer products are being released into the agricultural systems. There is little information about the direct effect of ENPs on phosphorus (P) availability, which is an essential nutrient for crop growthnaturally occurring in agricultural soils. The present study examined the effect of 1, 3, and 5% doses of Cu0 or Ag0 ENPs stabilized with L-ascorbic acid (suspension pH 2–3) on P ad- and desorption in an agricultural Andisol with total organic matter (T-OM) and with partial removal of organic matter (R-OM) by performing batch experiments. Our results showed that the adsorption kinetics data of H2PO4− on T-OM and R-OM soil samples with and without ENPs were adequately described by the pseudo-second-order (PSO) and Elovich models. The adsorption isotherm data of H2PO4− from T-OM and R-OM soil samples following ENPs addition were better fitted by the Langmuir model than the Freundlich model. When the Cu0 or Ag0 ENPs doses were increased, the pH value decreased and H2PO4− adsorption increased on T-OM and R-OM. The H2PO4− desorption (%) was lower with Cu0 ENPs than Ag0 ENPs. Overall, the incorporation of ENPs into Andisols generated an increase in P retention, which may affect agricultural crop production.


2015 ◽  
Vol 2015 ◽  
pp. 1-16 ◽  
Author(s):  
Adnan Haider ◽  
Inn-Kyu Kang

Silver nanoparticles (Ag-NPs) have diverted the attention of the scientific community and industrialist itself due to their wide range of applications in industry for the preparation of consumer products and highly accepted application in biomedical fields (especially their efficacy against microbes, anti-inflammatory effects, and wound healing ability). The governing factor for their potent efficacy against microbes is considered to be the various mechanisms enabling it to prevent microbial proliferation and their infections. Furthermore a number of new techniques have been developed to synthesize Ag-NPs with controlled size and geometry. In this review, various synthetic routes adapted for the preparation of the Ag-NPs, the mechanisms involved in its antimicrobial activity, its importance/application in commercial as well as biomedical fields, and possible application in future have been discussed in detail.


Author(s):  
Zi-Yu Chen ◽  
Yu-Chen Su ◽  
Fong-Yu Cheng ◽  
Shian-Jang Yan ◽  
Ying-Jan Wang

Engineered nanoparticles raise safety concerns. Silver nanoparticles (AgNPs) exert acute and chronic adverse effects by inducing reactive oxygen species (ROS)-mediated stress signaling pathways. We investigated the mechanisms by which AgNPs...


2014 ◽  
Vol 86 (7) ◽  
pp. 1129-1140 ◽  
Author(s):  
Setare Tahmasebi Nick ◽  
Ali Bolandi ◽  
Tova A. Samuels ◽  
Sherine O. Obare

AbstractEngineered nanoparticles (ENPs) are known to possess unique size and shape dependent chemical and physical properties. As a result of their properties, ENPs have been effective in several important applications including catalysis, sensor design, photonics, electronics, medicine, and the environmental remediation of toxic pollutants. Such properties and applications have led to an increase in the manufacture of ENPs and a rise in their presence in consumer products. The increase of ENPs in consumer products presents several opportunities and challenges, and necessitates a proactive study of their health and safety. This article highlights some recent work in which we have studied the effect of exposure of well-defined ENPs to pesticides and the effect of pH and dissolved organic matter. We also summarize our work and that of others who have studied the toxicity of ENPs with microorganisms. The results provide insights on the need for green manufacturing strategies of ENPs, their use and safe disposal practices.


2020 ◽  
Author(s):  
Stefania Mariano ◽  
Elisa Panzarini ◽  
Maria Dias Inverno ◽  
Nikolaos Voulvoulis ◽  
Luciana Dini

Abstract BackgroundSilver nanoparticles (AgNPs) are one of the most widely used nanomaterials in consumer products. When discharged into the aquatic environment AgNPs can cause toxicity to aquatic biota, through mechanisms that are still under debate, thus rendering the NPs effects evaluation a necessary step. Different aquatic organism models, i.e. microalgae, mussels, Daphnia magna, sea urchins and Danio rerio, etc. have been largely exploited for NPs toxicity assessment. On the other hand, alternative biological microorganisms abundantly present in nature, i.e. microalgae, are nowadays exploited as a potential sink for removal of toxic substances from the environment. Indeed, the green microalgae Chlorella vulgaris is one of the most used microorganisms for waste treatment.ResultsWith the aim to verify the possible involvement of C. vulgaris not only as a model microorganism of NPs toxicity but also for the protection toward NPs pollution, we used these microalgae to measure the AgNPs biotoxicity and bioaccumulation. In particular, to exclude any toxicity derived by Ag+ ions release, green chemistry synthesised and Glucose coated AgNPs (AgNPs-G) were used. C. vulgaris actively internalised AgNPs-G whose amount increases in a time and dose-dependent manner. The internalised NPs, found inside large vacuoles, were not released back into the medium, even after 1 week, and did not undergo biotransformation since AgNPs-G maintained their crystalline nature. Biotoxicity of AgNPs-G causes an exposure time and AgNPs-G dose-dependent growth reduction and a decrease in chlorophyll-a amount.ConclusionsThese results confirm C. vulgaris as a biomonitoring organism and also suggest it as a bioaccumulating microalgae for possible use in the environment protection.


Sign in / Sign up

Export Citation Format

Share Document