Optimizing the Cu-RDRP ofN-(2-hydroxypropyl) methacrylamide toward biomedical applications

2019 ◽  
Vol 10 (5) ◽  
pp. 564-568 ◽  
Author(s):  
Vladimír Raus ◽  
Libor Kostka

Aqueous Cu-RDRP ofN-(2-hydroxypropyl) methacrylamide was optimized to achieve co(polymers) of low dispersity and controlled molecular weight at high conversions.

2019 ◽  
Vol 26 (30) ◽  
pp. 5609-5624
Author(s):  
Dijana Saftić ◽  
Željka Ban ◽  
Josipa Matić ◽  
Lidija-Marija Tumirv ◽  
Ivo Piantanida

: Among the most intensively studied classes of small molecules (molecular weight < 650) in biomedical research are small molecules that non-covalently bind to DNA/RNA, and another intensively studied class is nucleobase derivatives. Both classes have been intensively elaborated in many books and reviews. However, conjugates consisting of DNA/RNA binder covalently linked to nucleobase are much less studied and have not been reviewed in the last two decades. Therefore, this review summarized reports on the design of classical DNA/RNA binder – nucleobase conjugates, as well as data about their interactions with various DNA or RNA targets, and even in some cases protein targets are involved. According to these data, the most important structural aspects of selective or even specific recognition between small molecule and target are proposed, and where possible related biochemical and biomedical aspects were discussed. The general conclusion is that this, rather new class of molecules showed an amazing set of recognition tools for numerous DNA or RNA targets in the last two decades, as well as few intriguing in vitro and in vivo selectivities. Several lead research lines show promising advancements toward either novel, highly selective markers or bioactive, potentially druggable molecules.


1979 ◽  
Vol 30 (9) ◽  
pp. 543-549 ◽  
Author(s):  
Guy Del Fiore ◽  
Jean-Claude Depresseux ◽  
P. Bartsch ◽  
Lino Quaglia ◽  
Jean-Marie Peters

Author(s):  
Florian K Wolf ◽  
Anna M Fischer ◽  
Holger Frey

Due to the low solubility of poly(glycolic acid) (PGA), its use is generally limited to the synthesis of random copolyesters with other hydroxy acids, such as lactic acid, or to applications that permit direct processing from the polymer melt. Insolubility is generally observed for PGA when the degree of polymerization exceeds 20. Here we present a strategy that allows the preparation of PGA-based multi-arm structures which significantly exceed the molecular weight of processable oligomeric linear PGA (<1000 g/mol). This was achieved by the use of a multifunctional hyperbranched polyglycerol (PG) macroinitiator and the tin(II)-2-ethylhexanoate catalyzed ring-opening polymerization of glycolide in the melt. With this strategy it is possible to combine high molecular weight with good molecular weight control (up to 16,000 g/mol, PDI = 1.4–1.7), resulting in PGA multi-arm star block copolymers containing more than 90 wt % GA. The successful linkage of PGA arms and PG core via this core first/grafting from strategy was confirmed by detailed NMR and SEC characterization. Various PG/glycolide ratios were employed to vary the length of the PGA arms. Besides fluorinated solvents, the materials were soluble in DMF and DMSO up to an average arm length of 12 glycolic acid units. Reduction in the T g and the melting temperature compared to the homopolymer PGA should lead to simplified processing conditions. The findings contribute to broadening the range of biomedical applications of PGA.


Materials ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6065
Author(s):  
Wangxi Fan ◽  
Xiuqin Fu ◽  
Zefang Li ◽  
Junfei Ou ◽  
Zhou Yang ◽  
...  

Ultrahigh molecular weight polyethylene (UHMWPE) materials have been prevalent joint replacement materials for more than 45 years because of their excellent biocompatibility and wear resistance. In this study, functionalized activated nanocarbon (FANC) was prepared by grafting maleic anhydride polyethylene onto acid-treated activated nanocarbon. A novel porous UHMWPE composite was prepared by incorporating the appropriate amount of FANC and pore-forming agents during the hot-pressing process for medical UHMWPE powder. The experimental results showed that the best prepared porous UHMWPE/FANC exhibited appropriate tensile strength, porosity, and excellent hydrophilicity, with a contact angle of 65.9°. In vitro experiments showed that the porous UHMWPE/FANC had excellent biocompatibility, which is due to its porous structure and hydrophilicity caused by FANC. This study demonstrates the potential viability for our porous UHMWPE/FANC to be used as cartilage replacement material for biomedical applications.


2017 ◽  
Author(s):  
Lewis E. Mackenzie ◽  
Jack A. Goode ◽  
Alexandre Vakurov ◽  
Padmaja P. Nampi ◽  
Sikha Saha ◽  
...  

AbstractUpconversion nanoparticles (UCNPs) are utilized extensively for biomedical imaging, sensing, and therapeutic applications, yet the molecular weight of UCNPs has not previously been reported. We present a theory based upon the crystal structure of UCNPs to estimate the molecular weight of UCNPs: enabling insight into UCNP molecular weight for the first time. We estimate the theoretical molecular weight of various UCNPs reported in the literature, predicting that spherical NaYF4 UCNPs ~ 10 nm in diameter will be ~1 MDa (i.e. 106 g/mol), whereas UCNPs ~ 45 nm in diameter will be ~100 MDa (i.e. 108 g/mol). We also predict that hexagonal crystal phase UCNPs will be of greater molecular weight than cubic crystal phase UCNPs. Additionally we find that a Gaussian UCNP diameter distribution will correspond to a lognormal UCNP molecular weight distribution. Our approach could potentially be generalised to predict the molecular weight of other arbitrary crystalline nanoparticles: as such, we provide standalone graphic user interfaces to calculate the molecular weight both UCNPs and arbitrary crystalline nanoparticles. We expect knowledge of UCNP molecular weight to be of wide utility in biomedical applications where reporting UCNP quantity in absolute numbers or molarity will be beneficial for inter-study comparison and repeatability.


2020 ◽  
Author(s):  
Anderson Fiamingo ◽  
Sergio Paulo Campana Filho ◽  
Osvaldo Novais Oliveira Junior

<p>The preparation of chitosans soluble in physiological conditions has been sought for years, but so far solubility in non-acidic aqueous media has only been achieved at the expense of lowering chitosan molecular weight. In this work, we applied the multistep ultrasound-assisted deacetylation process (USAD process) to β-chitin and obtained extensively deacetylated chitosans with high molecular weights (Mw ≥ 1,000,000 g mol<sup>-1</sup>). The homogeneous <i>N</i>-acetylation of a chitosan sample resulting from three consecutive USAD procedures allowed us to produce chitosans with a high weight average degree of polymerization (DPw ≈ 6,000) and tunable degrees of acetylation (DA from 5 to 80%). <i>N</i>-acetylation was carried out under mild conditions to minimize depolymerization, while preserving a predominantly random distribution of 2-amino-2-deoxy-D-glucopyanose (<i>GlcN</i>) and 2-acetamido-2-deoxy-D-glucopyanose (<i>GlcNAc</i>) units. This close to random distribution, inferred with deconvolution of nuclear magnetic resonance (<sup>1</sup>H NMR) spectra, is considered as responsible for the solubility within a wide pH range. Two of the highly <i>N</i>-acetylated chitosans (DA ≈ 60 % and ≈ 70 %) exhibited full water solubility even at neutral pH, which can expand the biomedical applications of chitosans. </p>


2015 ◽  
Vol 18 (3) ◽  
pp. 170-180
Author(s):  
Anh Thi Tram Tu ◽  
Huy Thuc Ha

Highly deacetylated chitosan (CS) reacted with anhydride acetic (Ac2O) to produce chitosan with various degree of deacetylation (DDA) depending on the CS/Ac2O ratios. The structure of products was characterized by FT-IR, 1H NMR, 13C NMR, and the molecular weight was identified by GPC. The DDA of products decreases as the CS/Ac2O ratio increases. The products with less than 80 % DDA were soluble in water with a wide pH range. The water-soluble chitosan can be used in many biomedical applications such as manufacturing drug delivery systems or functionalized iron oxide nanoparticles.


Sign in / Sign up

Export Citation Format

Share Document