scholarly journals Tea regimen, a comprehensive assessment of antioxidant and antitumor activities of tea extract produced by Tie Guanyin hybridization

RSC Advances ◽  
2018 ◽  
Vol 8 (21) ◽  
pp. 11305-11315 ◽  
Author(s):  
Xiaobin Zhang ◽  
Chengli Dai ◽  
Yuanyuan You ◽  
Lizhen He ◽  
Tianfeng Chen

Herein we demonstrate that Jin Guanyin extracts shows antioxidative activity, thus inhibiting ROS generation, promoting mitochondrial fragmentations and caspase activations in cancer cells, finally leading cell apoptosis and cycle arrest.

2017 ◽  
Vol 27 (7) ◽  
pp. 1306-1317
Author(s):  
Yen-Yun Wang ◽  
Pei-Wen Hsieh ◽  
Yuk-Kwan Chen ◽  
Stephen Chu-Sung Hu ◽  
Ya-Ling Hsu ◽  
...  

ObjectiveThe β-nitrostyrene family has been reported to possess anticancer properties. However, the anticancer activity of β-nitrostyrenes on cervical cancer cells and the underlying mechanisms involved remain unexplored. In this study, a β-nitrostyrene derivative CYT-Rx20 (3′-hydroxy-4′-methoxy-β-methyl-β-nitrostyrene) was synthesized, and its anticancer activity on cervical cancer cells and the mechanisms involved were investigated.MethodsThe effect of CYT-Rx20 on human cervical cancer cell growth was evaluated using cell viability assay. Reactive oxygen species (ROS) generation and annexin V staining were detected by flow cytometry. The protein expression levels of cleaved caspase-3, cleaved caspase-9, cleaved poly (ADPribose) polymerase, γH2AX, β-catenin, Vimentin, and Twist were measured by Western blotting. DNA double-strand breaks were determined by γ-H2AX foci formation and neutral comet assay. Migration assay was used to determine cancer cell migration. Nude mice xenograft was used to investigate the antitumor effects of CYT-Rx20 in vivo.ResultsCYT-Rx20 induced cytotoxicity in cervical cancer cells by promoting cell apoptosis via ROS generation and DNA damage. CYT-Rx20-induced cell apoptosis, ROS generation, and DNA damage were reversed by thiol antioxidants. In addition, CYT-Rx20 inhibited cervical cancer cell migration by regulating the expression of epithelial-to-mesenchymal transition markers. In nude mice, CYT-Rx20 inhibited cervical tumor growth accompanied by increased expression of DNA damage marker γH2AX and decreased expression of mesenchymal markers β-catenin and Twist.ConclusionsCYT-Rx20 inhibits cervical cancer cells in vitro and in vivo and has the potential to be further developed into an anti-cervical cancer drug clinically.


Metallomics ◽  
2014 ◽  
Vol 6 (8) ◽  
pp. 1480-1490 ◽  
Author(s):  
Zuandi Luo ◽  
Lianling Yu ◽  
Fang Yang ◽  
Zhennan Zhao ◽  
Bo Yu ◽  
...  

Ruthenium polypyridyl complexes inhibit cancer growth by targeting TrxR and promote the intracellular ROS generation, ultimately triggering mitochondria-mediated cell apoptosis.


2017 ◽  
Vol 38 (3) ◽  
pp. 1783-1789 ◽  
Author(s):  
Na Lam Hwang ◽  
Yong Jung Kang ◽  
Bokyung Sung ◽  
Seong Yeon Hwang ◽  
Jung Yoon Jang ◽  
...  

2020 ◽  
Author(s):  
Fenhong Kang ◽  
Yanlong Wang ◽  
Yaping Luo ◽  
Yongjun Zhang

Abstract Background: The cancer cell metastasis and the acquisition of chemotherapy resistance remain huge challenge for ovarian cancer treatment. Previously, N-myc downstream-regulated gene 2 (NDRG2) serves as a tumor suppressor for many cancers. Here, we attempted to investigate the specific roles of NDRG2 in ovarian cancer. Methods: The expression levels of NDRG2 were detected by qRT-PCR or Immunoblotting. CCK-8 assay was employed to examine the cell viability of ovarian cancer cells. The colony formation ability was determined by colony formation assay. Flow cytometry analyses were performed to detect the cell apoptosis and cell cycle. Xenograft tumor assay was performed to detect the in vivo function of NDRG2. Results: We revealed that NDRG2 mRNA expression and protein levels were downregulated within both ovarian cancer tissues and cell lines. The overexpression of NDRG2 dramatically inhibited the cell viability and colony formation and tumor growth, whereas promoted the cell apoptosis, cell cycle arrest in G1 phase within ovarian cancer cells. More importantly, NDRG2 overexpression significantly enhanced the suppressive roles of cisplatin (DDP) in ovarian cancer cell viability. On the contrary, NDRG2 silence exerted opposing effects on ovarian cancer cells. Conclusions: In summary, we provide a solid experimental basis demonstrating the tumor-suppressive effects of NDRG2 in inhibiting the cell proliferation, enhancing the cell apoptosis, eliciting the cell cycle arrest in G1 phase, and promoting the suppressive effects of DDP on the viability of ovarian cancer cells. NDRG2 administration presents a potent adjuvant treatment for ovarian cancer therapy.


2019 ◽  
Vol 15 (7) ◽  
pp. 743-754 ◽  
Author(s):  
Biao Xiong ◽  
Shi Chen ◽  
Peng Zhu ◽  
Meiling Huang ◽  
Weijie Gao ◽  
...  

Background: A large number of pyrazole derivatives have different biological activities such as anticancer, antimicrobial, anti-inflammatory, analgesic and antiepileptic activity. Among them, pyrazole oximes have attracted much attention due to their potential pharmacological activities, particularly anticancer activities. Objective: Our goal is to synthesize novel thiazolyl substituted bis-pyrazole oxime derivatives with potent antitumor activities by selectively inducing apoptosis and Reactive Oxygen Species (ROS) accumulation in cancer cells. Methods: Eighteen bis-pyrazole oximes were synthesized by conjugating thiazolyl substituted pyrazoles with pyrazoxime. The target compounds were characterized by 1HNMR, 13C NMR, and HRMS, and screened for their antiproliferative activity against four cancer cells in MTT assay. The most potent compound was examined for its inhibitory effect and ROS accumulation in both cancer cells HCT116 and normal intestinal epithelial cells CCD841. Finally, the most potent compound was further evaluated for its apoptotic induction by flow cytometry analysis and immunoblot analysis of apoptosis-related proteins and DNA damage proteins. Results: Most compounds displayed potent antiproliferative activity against four cancer cell lines in vitro, displaying potencies superior to 5-FU. In particular, the most potent compound 13l selectively inhibited proliferation of colorectal cancer HCT116 cells but not normal colon CCD841 cells. Furthermore, compound 13l also selectively promoted intracellular ROS accumulation in HCT116 which was involved in 13l inhibition of cancer cell proliferation and induction of cell apoptosis. Finally, compound 13l also dose-dependently induced cancer cell apoptosis by regulating apoptotic and DNA damage related proteins expressions. Conclusion: Our synthetic bis-pyrazole oxime derivatives possess potent antitumor activities by selectively inducing apoptosis and ROS accumulation in cancer cells, which may hold great promise as therapeutic agents for the treatment of human cancers.


2021 ◽  
Author(s):  
Portia P Raphela-Choma ◽  
Mthokozisi BC Simelane ◽  
Mpho S Choene

Abstract Background Natural compounds derived from various medicinal plants may activate several physiological pathways which can be valuable to diseases such as cancer. Isomukaadial acetate has previously been shown to possess antimalarial and anti-diabetic properties. The purpose of this study was to evaluate the antiproliferative effects of isomukaadial acetate on breast and ovarian cancer cell lines. Method Cell viability assays were conducted using AlamarBlue assay and xCELLigence system. Cell apoptosis and cell cycle arrest were determined and analyzed by flow cytometer. Effector caspase (3/7) activation was evaluated by caspase Glo®-3/7 reagent and gene expression was analyzed by Real-Time Polymerase Chain Reaction. Results The Alamar blue assay and xCELLigence showed that Iso-mukaadial acetate exhibited anti-proliferative effects on MDA-MB 231, RMG-1, and HEK 293 cell lines in a concentration-dependent manner. Iso-mukaadial acetate induced apoptosis in both cancer cell lines caused cell cycle arrest at the S phase (RMG-1) and early G2 phase (MDA-MB 231) and expressed caspase 3/7 activity in MDA-MB 231 and RMG-1 cells. BAX and p21 were upregulated in MDA-MB 231 and RMG-1 cells after treatment. Conclusion IMA significantly inhibited cancer growth and induced cell apoptosis with cell cycle modulation. IMA may be considered a promising candidate for the development of anticancer drugs either for its cytotoxic or cytostatic effect Furthermore, IMA requires to be further studied more to clearly understand its mechanism of action on cancer cells.


Sign in / Sign up

Export Citation Format

Share Document