scholarly journals Horseradish peroxidase-mediated synthesis of an antioxidant gallic acid-g-chitosan derivative and its preservation application in cherry tomatoes

RSC Advances ◽  
2018 ◽  
Vol 8 (36) ◽  
pp. 20363-20371 ◽  
Author(s):  
Xiao Zhang ◽  
Hao Wu ◽  
Linan Zhang ◽  
Qingjie Sun

Horseradish peroxidase-mediated grafting of gallic acid to chitosan with good antioxidant capacity for preservation of cherry tomatoes.

Antioxidants ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1187
Author(s):  
Manyou Yu ◽  
Irene Gouvinhas ◽  
Ana Barros

In recent decades, an intensive search for natural and novel types of antioxidant polyphenolics has been carried out on numerous plant materials. However, the current literature has very little information on their storage stability in the form of freshly prepared infusions. This study aims to characterize the polyphenolic composition and the antioxidant capacity of pomegranate (Punica granatum L.) leaf infusions over one-day storage (analyzed at 0, 2, 4, 6, 8, and 24 h). Spectrophotometric evaluation demonstrated that the infusion presented no significant changes in the content of total phenols (131.40–133.47 mg gallic acid g−1) and ortho-diphenols (239.91–244.25 mg gallic acid g−1). The infusion also maintained high stability (over 98% and 82%, respectively) for flavonoids (53.30–55.84 mg rutin g−1) and condensed tannins (102.15–124.20 mg epicatechin g−1), with stable (>90%) potent antioxidant capacity (1.5–2.2 mmol Trolox g−1) throughout 0–24 h storage. The main decrease was observed during 0–2 h storage of flavonoids, 8–24 h storage of tannins, and 0–4 h storage of antioxidant capacity. Chromatographic analysis further revealed that 7 decreased and 11 increased compounds were found within 0–24 h storage. The good stability of the total polyphenolics and antioxidant properties might be related to the complex conversion and activity compensation among these compounds. The findings suggest that pomegranate leaf infusion could be of great interest in the valorization of high added-value by-products and in the application of green and functional alternatives in the food-pharma and nutraceutical industries.


2018 ◽  
Vol 46 (1) ◽  
pp. 128-133 ◽  
Author(s):  
Ferit CELIK ◽  
Mehmet Ramazan BOZHUYUK ◽  
Sezai ERCISLI ◽  
Muttalip GUNDOGDU

In present study, fruit weight, fruit firmness, external fruit color, soluble solid content, pH, titratable acidity, vitamin C, total phenolics, total anthocyanins, and antioxidant capacity of eight wild bilberry grown in Coruh valley in northeastern Turkey were determined. The blueberry cv. ‘Bluecrop’ is also included study to make comparison with bilberry genotypes. Antioxidant activity of bilberry and blueberry fruits were comparatively assessed by FRAP (Ferric reducing antioxidant power) assay. Significantly higher content of phenolics and anthocyanins was found in bilberry fruits than in blueberry fruits. However blueberry cv. ‘Bluecrop’ exhibited higher fruit weight and vitamin C content than bilberry fruits. Total phenolic and total anthocyanin content was 327 mg gallic acid equivalent and 142 mg of cyanidin-3-glucoside equivalent in 100 g fresh fruit in cv. ‘Bluecrop’ while it was between 492-563 mg gallic acid equaivalent and 307-342 mg of cyanidin-3-glucoside equivalent in 100 g fresh fruits of  bilberry accessions. Moreover, wild accessions approximately had 2-3 folds higher antioxidant capacity than cv. ‘Bluecrop’. Results suggest the possibility of improving the bioactive and antioxidant properties of bilberry cultivars based food products by using wild ones in cross breeding. It was also concluded that genotypes significantly affect their bioactive content and consequently the possibility of using wild bilberry fruits as a potential source of natural antioxidants in food industry.


Author(s):  
Mariana Atena Poiană ◽  
I. Gergen ◽  
Diana Moigrădean ◽  
Viorica Târu ◽  
Diana Dogaru

In this paper it was obtained the apple vinegar with addition of red wines concentrates in different percents for to improve the antioxidant properties. For processing of red wine concentrates it was used the young red wines Merlot and Cabernet Sauvignon. For resulted vinegar types were analyzed total acidity, extract, total antioxidant capacity (using FRAP method), total polyphenols amount (by Folin-Ciocalteu method) and monomeric anthocyanins (using pH-differential method). Polyphenols content from vinegar with Cabernet Sauvignon concentrates addition was situated in the range 0.74-3.42 mM gallic acid/L and for vinegar with red wine Merlot concentrates addition between 0.74-2.64 mM gallic acid/L. The antioxidant capacity was presented the values between 0.45-8.18 mM Fe2+/L for apple vinegar with Cabernet Sauvignon concentrates addition and between 0.45-6.69 mM Fe2+/L for vinegar with Merlot concentrate addition. The polyphenols content and monomeric anthocyanins content of apple vinegars with red wine concentrates increase in rapport with the percent of red wines concentrates added. The values of polyphenols content and total antioxidant capacity were more with approximate 20% in the case of vinegar with Cabernet Sauvignon concentrates addition comparatively with the case of vinegar with Merlot concentrates addition.


2019 ◽  
Vol 15 ◽  
pp. 04001 ◽  
Author(s):  
L. Castro-López ◽  
G. Castillo-Sánchez ◽  
L. Díaz-Rubio ◽  
I. Córdova-Guerrero

The evaluation of the antioxidant capacity of grape cultivars Cabernet sauvignon is important because it varies according to the production area. In this work, it was evaluated the content of phenolic compounds and the total antioxidant capacity (CAT) of grape skins and grape seed Cabernet sauvignon (Vitis vinifera L.) in three vineyards located in the Valley of Guadalupe, B.C, México. The content of total phenols was determined by the Folin-Ciocalteau method and the CAT of grape skin and seed extracts by the stabilization methods of the (ABTS•+) and DPPH• radicals. The CAT in the seed extracts was increased (P < 0.05) in the following order: vineyard 2 < vineyard 1 < vineyard 3. The highest contents of gallic acid, resveratrol and rutin were found in the extracts that presented the highest CAT, which corresponded to the cultivars of vineyard 3. The same happened in extract of skins, having vineyard 3 the contents of CAT (ABTS•+) higher. The total phenolic seed compound was presented in vineyard 2 with 1,545, followed by vineyard 1 with 1,523, vineyard 3 with 1,146 expressed as g GAE.100 g of sample. In skin, the behavior was as follows; vineyard 3 <vineyard 2 <vineyard 1. 1,062, 1,086, 1,115 expressed as g GAE.100 g sample respectively.Keywords: antioxidant, phenolics, ABTS, gallic acid.


Antioxidants ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 597 ◽  
Author(s):  
Nerea Jiménez-Moreno ◽  
Francesca Volpe ◽  
Jose Antonio Moler ◽  
Irene Esparza ◽  
Carmen Ancín-Azpilicueta

The use of grape stems for the extraction of bioactive compounds to be used in the pharmaceutical, food, and cosmetic industries is a promising objective. The aim of this work is to determine the influence of the different extraction conditions (temperature, ethanol concentration, and ratio of sample/solvent) on phenolic composition and antioxidant capacity of Mazuelo stem extracts. In general, the ethanol concentration of the extraction solvent was the factor that had the greatest influence on the extraction of different bioactive compounds. The greatest content of total phenolic compounds and the highest antioxidant activity of the extracts were obtained with 50% ethanol and at 40 °C. The most abundant compound found in the different extracts obtained from Mazuelo grape stem was (+)-catechin, but appreciable concentrations of gallic acid, a quercetin derivative, and stilbenes (trans-resveratrol and trans-ε-viniferin) were also extracted. Quercetin and malvidin-3-glucoside showed the highest correlation with the antioxidant capacity of the extracts, while stilbenes did not present such relation. The maximum concentration of gallic acid was extracted with water but the extraction of most of the compounds was maximum on using 50% ethanol. Consequently, the selection of the extraction method to be used will depend on the particular compound to be extracted in greatest quantity.


2010 ◽  
Vol 24 (9) ◽  
pp. 1292-1296 ◽  
Author(s):  
Hwa Jung Choi ◽  
Jae Hyoung Song ◽  
Lok Ranjan Bhatt ◽  
Seung Hwa Baek

2021 ◽  
Vol 7 (10) ◽  
pp. 812
Author(s):  
Weslley Souza de Paiva ◽  
Moacir Fernandes Queiroz ◽  
Diego Araujo Sabry ◽  
André Luiz Cabral Monteiro de Azevedo Santiago ◽  
Guilherme Lanzi Sassaki ◽  
...  

Oxidative stress is the cause of numerous diseases in humans; therefore, there has been a continuous search for novel antioxidant molecules. Fungal chitosan is an attractive molecule that has several applications (antifungal, antibacterial, anticancer and antiparasitic action) owing to its unique characteristics; however, it exhibits low antioxidant activity. The aim of this study was to obtain fungal chitosan (Chit-F) from the fungus Rhizopus arrhizus and synthesize its derivative, fungal chitosan-gallic acid (Chit-FGal), as a novel antioxidant chitosan derivative for biomedical use. A low molecular weight Chi-F (~3.0 kDa) with a degree of deacetylation of 86% was obtained from this fungus. Chit-FGal (3.0 kDa) was synthesized by an efficient free radical-mediated method using hydrogen peroxide (H2O2) and ascorbic acid. Both Chit-F and Chit-FGal showed similar copper chelating activities; however, Chit-FGal was more efficient as an antioxidant, exhibiting twice the total antioxidant capacity than Chi-F (p < 0.05). Furthermore, H2O2 (0.06 M) promoted a 50% decrease in the viabilities of the 3T3 fibroblast cells. However, this effect was abolished in the presence of Chit-FGal (0.05–0.25 mg/mL), indicating that Chit-FGal protected the cells from oxidative damage. These results suggest that Chit-FGal may be a promising agent to combat oxidative stress.


Sign in / Sign up

Export Citation Format

Share Document