scholarly journals Facile synthesis of 1.3 nm monodispersed Ag nanoclusters in an aqueous solution and their antibacterial activities for E. coli

RSC Advances ◽  
2018 ◽  
Vol 8 (53) ◽  
pp. 30207-30214 ◽  
Author(s):  
Chengpeng Jiao ◽  
Yuantao Pei ◽  
Liqiong Wang ◽  
Haijun Zhang ◽  
Zili Huang ◽  
...  

Ag NCs of 1.3 nm prepared by a facile one-pot strategy exhibit excellent antibacterial activities for E. coli.

BioResources ◽  
2021 ◽  
Vol 16 (2) ◽  
pp. 3360-3376
Author(s):  
Zhinong Zeng ◽  
Shujuan Yang ◽  
Lei Zhang ◽  
Rong Tang ◽  
Liping Zhang

A simple, novel method was developed for synthesizing cellulose (CE) fibers doped with silver nanoparticles (Ag NPs) in the green solvent tetrabutylammonium hydroxide / dimethyl sulfoxide / H2O at room temperature. Tetrabutylammonium hydroxide accelerated the reduction of Ag+ to Ag by the cellulose chains, yielding Ag NPs in cellulose solution stabilized using polyethyleneimine (PEI). After 24 h, almost all the Ag+ was reduced to Ag NPs. The influences of silver nitrate concentration, reaction time, and stabilizer on the formation of Ag NPs were investigated by UV-vis spectrophotometry. The prepared smooth and dense cellulose / Ag NP fibers showed high mechanical properties, with a tensile strength of 304.3 MPa and an elongation at break of 22.1%. The fibers exhibited excellent antibacterial activities against Escherichia coli and Staphylococcus aureus, with more than 99% of E. coli bacteria killed by Ag NP / cellulose fibers. The synthesis procedure offers a general and mild approach to designing materials of almost any shape.


RSC Advances ◽  
2018 ◽  
Vol 8 (49) ◽  
pp. 27805-27810 ◽  
Author(s):  
Peng Gao ◽  
Hao Wang ◽  
Guifu Zou ◽  
Ke-Qin Zhang

Fluorescent silver nanoclusters (Ag NCs) that are capable of emitting green light have been synthesized using a peptide derived from the C terminal of silk fibroin heavy chain (CSH) via a one-pot, green, and facile synthesis method.


2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Ying-Fan Liu ◽  
Lei Wang ◽  
Chun-Po Bu ◽  
Guo-Qing Wang ◽  
Yan-Hui Zhang ◽  
...  

This paper focuses on the synthesis of novel Ag nanoclusters (NCs) using DHLA as capping reagents in aqueous solution by a photoreduction method. Luminescence studies indicated that the DHLA-Ag NCs exhibited strong blue emission with maximum peak at 480 nm. The maximum emission of the NCs can be greatly improved with irradiating time by around 15-fold from 3 h to 67 h. By means of mycelium growth rate, the results showed that the Ag NCs with smaller sizes had a good antimicrobial effect.


2021 ◽  
Vol 1163 ◽  
pp. 106-116
Author(s):  
Harekrishna Bar

Gold nanoparticles have been successfully synthesized using aqueous leaf extract of Piper betle In this extracellular synthesis, after exposing of metal ions to betel leaf extract, reduction leads into their metallic state and these are stabilized by the biomolecules present in leaf extract, where extract are being used as both reducing as well as stabilizing agents at ambient condition. Gold (AuNPs) nanoparticles are characterized by UV-Vis, FESEM, HRTEM and XRD measurements. Synthesized gold nanoparticles are mostly spherical in shape with diameter ~ 30-50 nm. Antibacterial activities of the synthesized nanoparticles are investigated against two Gram-negative (Escherichia coli and Pseudomonas aeruginosa) and two Gram-positive (Staphylococcus aureus and Bacillus thuringiensis) bacteria using the disc diffusion method. AuNPs show inhibition activity against P. aeruginosa andE. coli respectively nearly equivalent to the commercially available antibacterial drug e.g. Norfloxacin (Nx). The minimum inhibition concentration (MIC) results indicate that 36 μg/mL gold nanoparticles inhibit the growth of E. coli cells.


CrystEngComm ◽  
2017 ◽  
Vol 19 (48) ◽  
pp. 7253-7259 ◽  
Author(s):  
Lianjie Zhu ◽  
Fubo Gao ◽  
Pengzhao Lv ◽  
Yan Zeng ◽  
Wenwen Wang ◽  
...  

The flower-like Cu2−xSe assembled from hexagonal nanosheets shows excellent antibacterial activities to S. aureus and E. coli, and its antibacterial mechanism was confirmed experimentally.


2018 ◽  
Vol 15 (3) ◽  
pp. 380-387
Author(s):  
Xia Zhao ◽  
Xiaoyu Lu ◽  
Lipeng Zhang ◽  
Tianjiao Li ◽  
Kui Lu

Aim and Objective: Pyrazolone sulfones have been reported to exhibit herbicidal and antibacterial activities. In spite of their good bioactivities, only a few methods have been developed to prepare pyrazolone sulfones. However, the substrate scope of these methods is limited. Moreover, the direct sulfonylation of pyrazolone by aryl sulfonyl chloride failed to give pyrazolone sulfones. Thus, developing a more efficient method to synthesize pyrazolone sulfones is very important. Materials and Method: Pyrazolone, aryl sulphonyl hydrazide, iodine, p-toluenesulphonic acid and water were mixed in a sealed tube, which was heated to 100°C for 12 hours. The mixture was cooled to 0°C and m-CPBA was added in batches. The mixture was allowed to stir for 30 min at room temperature. The crude product was purified by silica gel column chromatography to afford sulfuryl pyrazolone. Results: In all cases, the sulfenylation products were formed smoothly under the optimized reaction conditions, and were then oxidized to the corresponding sulfones in good yields by 3-chloroperoxybenzoic acid (m-CPBA) in water. Single crystal X-ray analysis of pyrazolone sulfone 4aa showed that the major tautomer of pyrazolone sulfones was the amide form instead of the enol form observed for pyrazolone thioethers. Moreover, the C=N double bond isomerized to form an α,β-unsaturated C=C double bond. Conclusion: An efficient method to synthesize pyrazolone thioethers by iodine-catalyzed sulfenylation of pyrazolones with aryl sulfonyl hydrazides in water was developed. Moreover, this method was employed to synthesize pyrazolone sulfones in one-pot by subsequent sulfenylation and oxidation reactions.


Synthesis ◽  
2020 ◽  
Author(s):  
Peter Ehlers ◽  
Peter Langer ◽  
Marian Blanco Ponce ◽  
Silvio Parpart ◽  
Alexander Villinger ◽  
...  

AbstractA concise and modular synthesis of pyrrolo[1,2-a][1,6]- and [1,8]naphthyridines by a one-pot two-step reaction consisting of electrophilic acylation followed by an alkyne-carbonyl-metathesis reaction as the final cyclization step is reported. This developed synthetic methodology allows the facile synthesis of these heterocyclic core structures in mainly high overall yields under metal-free conditions. Reaction conditions are carefully optimized and display a novel supplement to access these tricyclic heterocyclic compounds.


Foods ◽  
2021 ◽  
Vol 10 (8) ◽  
pp. 1786
Author(s):  
György Schneider ◽  
Bettina Schweitzer ◽  
Anita Steinbach ◽  
Botond Zsombor Pertics ◽  
Alysia Cox ◽  
...  

Contamination of meats and meat products with foodborne pathogenic bacteria raises serious safety issues in the food industry. The antibacterial activities of phosphorous-fluorine co-doped TiO2 nanoparticles (PF-TiO2) were investigated against seven foodborne pathogenic bacteria: Campylobacter jejuni, Salmonella Typhimurium, Enterohaemorrhagic E. coli, Yersinia enterocolitica, Shewanella putrefaciens, Listeria monocytogenes and Staphylococcus aureus. PF-TiO2 NPs were synthesized hydrothermally at 250 °C for 1, 3, 6 or 12 h, and then tested at three different concentrations (500 μg/mL, 100 μg/mL, 20 μg/mL) for the inactivation of foodborne bacteria under UVA irradiation, daylight exposure or dark conditions. The antibacterial efficacies were compared after 30 min of exposure to light. Distinct differences in the antibacterial activities of the PF-TiO2 NPs, and the susceptibilities of tested foodborne pathogenic bacterium species were found. PF-TiO2/3 h and PF-TiO2/6 h showed the highest antibacterial activity by decreasing the living bacterial cell number from ~106 by ~5 log (L. monocytogenes), ~4 log (EHEC), ~3 log (Y. enterolcolitca, S. putrefaciens) and ~2.5 log (S. aureus), along with complete eradication of C. jejuni and S. Typhimurium. Efficacy of PF-TiO2/1 h and PF-TiO2/12 h NPs was lower, typically causing a ~2–4 log decrease in colony forming units depending on the tested bacterium while the effect of PF-TiO2/0 h was comparable to P25 TiO2, a commercial TiO2 with high photocatalytic activity. Our results show that PF-co-doping of TiO2 NPs enhanced the antibacterial action against foodborne pathogenic bacteria and are potential candidates for use in the food industry as active surface components, potentially contributing to the production of meats that are safe for consumption.


Molecules ◽  
2021 ◽  
Vol 26 (6) ◽  
pp. 1773
Author(s):  
Patchima Sithisarn ◽  
Piyanuch Rojsanga ◽  
Pongtip Sithisarn

Oroxylum indicum extracts from the seeds collected from Lampang and Pattani provinces in Thailand, and young fruits and flowers exhibited in vitro display antioxidant and antibacterial activities against clinically isolated zoonotic bacteria including Staphylococcus intermedius, Streptococcus suis, Pseudomonas aeruginosa, β-hemolytic Escherichia coli and Staphylococcus aureus. The orange crystals and yellow precipitates were obtained from the preparation processes of the seed extracts. The orange-red crystals from the seeds collected from Lampang province exhibited strong in vitro 2,2-diphenyl-1-picrylhydrazyl (DPPH) scavenging effects (EC50 value = 25.99 ± 3.30 μg/mL) and antibacterial effects on S. intermedius and β-hemolytic E. coli while the yellow precipitate from the same source exhibited only antioxidant activity. Quantitative analysis of phytochemicals in O. indicum samples by spectrophotometric and HPLC techniques showed that they contained different amounts of total phenolic, total flavonoid and three major flavones; baicalin, baicalein and chrysin contents. Young fruit extract, which contained low amounts of flavone contents, still promoted antibacterial effects against the tested bacteria with IC50 values lower than 1 mg/mL and MIC values between 4 to 10 mg/mL in S. intermedius, S. aureus and S suis while higher IC50 and MIC values against P. aeruginosa and β-hemolytic E. coli were found. From scanning electron microscopy, the extract of the young fruit of O. indicum promoted morphological changes in the bacterial cells by disrupting the bacterial cell walls, inducing leakage of the cellular content, and generating the abnormal accumulation of cells. The mechanism of action of the extract for this antibacterial effect may be the disruption of the cell membrane and abnormal cell aggregations. Regression analysis of the results suggests the correlation between total phenolic and total flavonoid contents and antioxidant and antibacterial effects. Baicalin was found to have a high correlation with an inhibitory effect against β-hemolytic E. coli while three unidentified peaks, which could be flavones, showed high correlations with an inhibitory effect against S. intermedius, S. suis, P. aeruginosa and S. aureus.


Sign in / Sign up

Export Citation Format

Share Document