scholarly journals Direct observation of pore collapse and tensile stress generation on pore walls due to salt crystallization in a PDMS channel

Soft Matter ◽  
2019 ◽  
Vol 15 (22) ◽  
pp. 4562-4569 ◽  
Author(s):  
Antoine Naillon ◽  
Pierre Joseph ◽  
Marc Prat

In contrast with the classical picture where the generation of stress on pore walls due to salt crystallisation is analysed by a compressive stress using the concept of crystallization pressure, we report a mechanism leading to the generation of a local tensile stress.

IAWA Journal ◽  
1999 ◽  
Vol 20 (1) ◽  
pp. 45-58 ◽  
Author(s):  
Willie Abasolo ◽  
Masato Yoshida ◽  
Hiroyuki Yamamoto ◽  
Takashi Okuyama

Internal stress development was investigated in rattan canes (Calamus merrillii Becc.) following the procedures used in trees. Measurements showed that longitudinal compressive stresses existed at the periphery while longitudinal tensile stresses existed at the core. Such stresses originated from the fibers. Fiber MFA was observed to be beyond 20" and the lignin content was above 30%. Considering its similarities to compression wood tracheids, it was assumed that the rattan fibers generated longitudinal compressive stress. The amount of stress varied from base to top and from periphery to core because of the variation in the proportion of fibers along these points. This is why the longitudinal compressive stress that was generated at the base was higher than at the top and high longitudinal compressive stress was developed at the periphery. As a response to this high peripheral stress, longitudinal tensile stress was induced at the core.


Cellulose ◽  
2021 ◽  
Vol 28 (7) ◽  
pp. 4069-4087
Author(s):  
Sandra A. Nascimento ◽  
Eupídio Scopel ◽  
Camila A. Rezende

2020 ◽  
Vol 29 ◽  
pp. 2633366X2095872
Author(s):  
Yang Wei ◽  
Mengqian Zhou ◽  
Kunpeng Zhao ◽  
Kang Zhao ◽  
Guofen Li

Glulam bamboo has been preliminarily explored for use as a structural building material, and its stress–strain model under axial loading has a fundamental role in the analysis of bamboo components. To study the tension and compression behaviour of glulam bamboo, the bamboo scrimber and laminated bamboo as two kinds of typical glulam bamboo materials were tested under axial loading. Their mechanical behaviour and failure modes were investigated. The results showed that the bamboo scrimber and laminated bamboo have similar failure modes. For tensile failure, bamboo fibres were ruptured with sawtooth failure surfaces shown as brittle failure; for compression failure, the two modes of compression are buckling and compression shear failure. The stress–strain relationship curves of the bamboo scrimber and laminated bamboo are also similar. The tensile stress–strain curves showed a linear relationship, and the compressive stress–strain curves can be divided into three stages: elastic, elastoplastic and post-yield. Based on the test results, the stress–strain model was proposed for glulam bamboo, in which a linear equation was used to describe the tensile stress–strain relationship and the Richard–Abbott model was employed to model the compressive stress–strain relationship. A comparison with the experimental results shows that the predicted results are in good agreement with the experimental curves.


2018 ◽  
Vol 8 (12) ◽  
pp. 2598 ◽  
Author(s):  
Haiying Ma ◽  
Xuefei Shi ◽  
Yin Zhang

Twin-I girder bridge systems composite with precast concrete deck have advantages including construction simplification and improved concrete strength compared with traditional multi-I girder bridge systems with cast-in-place concrete deck. But the cracking is still a big issue at interior support for continuous span bridges using twin-I girders. To reduce cracks occurrence in the hogging regions subject to negative moments and to guarantee the durability of bridges, the most essential way is to reduce the tensile stress of concrete deck within the hogging regions. In this paper, the prestressed tendons are arranged to prestress the precast concrete deck before it is connected with the steel girders. In this way, the initial compressive stress induced by the prestressed tendons in the concrete deck within the hogging region is much higher than that in regular concrete deck without prestressed tendons. A finite element analysis is developed to study the long-term behaviour of prestressed concrete deck for a twin-I girder bridge. The results show that the prestressed tendons induce large compressive stresses in the concrete deck but the compressive stresses are reduced due to concrete creep. The final compressive stresses in the concrete deck are about half of the initial compressive stresses. Additionally, parametric study is conducted to find the effect to the long-term behaviour of concrete deck including girder depth, deck size, prestressing stress and additional imposed load. The results show that the prestressing compressive stress in precast concrete deck is transferred to steel girders due to concrete creep. The prestressed forces transfer between the concrete deck and steel girder cause the loss of compressive stresses in precast concrete deck. The prestressed tendons can introduce some compressive stress in the concrete deck to overcome the tensile stress induced by the live load but the force transfer due to concrete creep needs be considered. The concrete creep makes the compressive stress loss and the force redistribution in the hogging regions, which should be considered in the design the twin-I girder bridge composite with prestressed precast concrete deck.


2019 ◽  
Vol 944 ◽  
pp. 1088-1093
Author(s):  
Jun Chen ◽  
She Wei Xin ◽  
Wei Zhou ◽  
Qian Li ◽  
Si Yuan Zhang ◽  
...  

TA24 titanium alloy pipe with 638mm diameter and 19mm wall thickness is carried out continuous load flatten test, and the stress of internal and external pipe wall during flatten process is studied in this paper. The results show that the TA24 titanium alloy tube has good flattening performance, and the flattening process has experienced original stage, flattened oblate stage, flattened straight wall stage, flattened depressed stage, flattened concave contact stage. During the flattening process, the outer layer of the upper and lower wall of the tube is subjected to compressive stress, and the inner layer material is subjected to tensile stress. The tensile and compressive forces cause the vertical part of the upper and lower walls to be concave. The outer layer of the left and right circular arc parts is subjected to tensile stress and the inner layer is subjected to tensile stress. The compressive stress also causes the radius of the arc to decrease due to the combined force of the tensile and compressive forces, that is, the flattening occurs. With the decrease of and pressing distance under continuous loading condition, the metal on the left and right sides of the pipe gathers toward the middle depression, which aggravates the deformation of the upper and lower walls until the upper and lower walls contact, and the arc radius of the left and right walls decreases until the outer surface cracks. The pipe microstructure changes significantly into elongated deformation structure during the flattening process. The most severe part of the deformation is the left and right end arc of the pipe, followed by the upper and lower end depression.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Xiaoyu Zhang ◽  
Dichen Li ◽  
Jiale Geng

Purpose Laser cladding deposition is limited in industrial application by the micro-defects and residual tensile stress for the thermal forming process, leading to lower fatigue strength compared with that of the forging. The purpose of this paper is to develop an approach to reduce stress and defects. Design/methodology/approach A hybrid process of laser cladding deposition and shot peening is presented to transform surface strengthening technology to the overall strengthening technology through layer-by-layer forming and achieve enhancement. Findings The results show that the surface stress of the sample formed by the hybrid process changed from tensile stress to compressive stress, and the surface compressive stress introduced could reach more than four times the surface tensile stress of the laser cladding sample. At the same time, internal micro-defects such as pores were reduced. The porosity of the sample formed by the hybrid process was reduced by 90.12% than that of the laser cladding sample, and the surface roughness was reduced by 43.16%. Originality/value The authors believe that the hybrid process proposed in this paper can significantly expand the potential application of laser cladding deposition by solving its limitations, promoting its efficiency and applicability in practical cases.


2020 ◽  
Vol 71 (9) ◽  
pp. 2641-2649
Author(s):  
Romain Lehnebach ◽  
Tancrède Alméras ◽  
Bruno Clair

Abstract Recent works revealed that bark is able to produce mechanical stress to control the orientation of young tilted stems. Here we report how the potential performance of this function changes with stem size in six Amazonian species with contrasted bark anatomy. The potential performance of the mechanism depends both on the magnitude of bark stress and the relative thickness of the bark. We measured bark longitudinal residual strain and density, and the allometric relationship between bark thickness and stem radius over a gradient of tree sizes. Constant tensile stress was found in species that rely on bark for the control of stem orientation in young stages. Other species had increasing compressive stress, associated with increasing density attributed to the development of sclereids. Compressive stress was also associated with low relative bark thickness. The relative thickness of bark decreased with size in all species, suggesting that a reorientation mechanism based on bark progressively performs less well as the tree grows. However, greater relative thickness was observed in species with more tensile stress, thereby evidencing that this reduction in performance is mitigated in species that rely on bark for reorientation.


1996 ◽  
Vol 53 (7) ◽  
pp. 4117-4124 ◽  
Author(s):  
N. A. Marks ◽  
D. R. McKenzie ◽  
B. A. Pailthorpe

Sign in / Sign up

Export Citation Format

Share Document