A cellular/intranuclear dual-targeting nanoplatform based on gold nanostar for accurate tumor photothermal therapy

2018 ◽  
Vol 6 (10) ◽  
pp. 1543-1551 ◽  
Author(s):  
Si Chen ◽  
Jinxuan Fan ◽  
Wenxiu Qiu ◽  
Fan Liu ◽  
Guoping Yan ◽  
...  

A versatile GNS-NLS@HA nanoplatform was constructed for tumor cellular/intranuclear dual-targeting photothermal therapy. It displayed excellent tumor inhibition efficiency as well as anti-metastasis ability in vivo.

Theranostics ◽  
2015 ◽  
Vol 5 (9) ◽  
pp. 946-960 ◽  
Author(s):  
Yang Liu ◽  
Jeffrey R. Ashton ◽  
Everett J. Moding ◽  
Hsiangkuo Yuan ◽  
Janna K. Register ◽  
...  

Author(s):  
Mack Biyiklioglu

Photodynamic therapy and photothermal therapy as non-invasive treatment methods have been receiving more and more attention. The report shows that zinc(II) phthalocyanine (Pc2) modified by perphenazine forms nanoparticles with a particle size of 110 nm by [Formula: see text]–[Formula: see text] stacking in water. It has good photothermal effect when illuminated by 680 nm laser in aqueous solution. In addition, its ability to produce active oxygen is 2.3-fold that of methylene blue, so Pc2 also has a good photodynamic effect. In vivo fluorescence shows that Pc2 has a good targeting effect on tumors. Under the synergistic effect of photodynamic therapy and photothermal therapy, Pc2 has good tumor inhibition efficiency.


2021 ◽  
Author(s):  
Jong Hyun Kim ◽  
Samuel Ofori ◽  
Sean Parkin ◽  
Hemendra Vekaria ◽  
Patrick G. Sullivan ◽  
...  

Expanding the chemical diversity of metal complexes provides a robust platform to generate functional bioactive reagents.


2020 ◽  
Vol 12 (1) ◽  
Author(s):  
Songtao Zhang ◽  
Longhai Jin ◽  
Jianhua Liu ◽  
Yang Liu ◽  
Tianqi Zhang ◽  
...  

AbstractIn spite of the tumor microenvironments responsive cancer therapy based on Fenton reaction (i.e., chemodynamic therapy, CDT) has been attracted more attentions in recent years, the limited Fenton reaction efficiency is the important obstacle to further application in clinic. Herein, we synthesized novel FeO/MoS2 nanocomposites modified by bovine serum albumin (FeO/MoS2-BSA) with boosted Fenton reaction efficiency by the synergistic effect of co-catalyze and photothermal effect of MoS2 nanosheets triggered by the second near-infrared (NIR II) light. In the tumor microenvironments, the MoS2 nanosheets not only can accelerate the conversion of Fe3+ ions to Fe2+ ions by Mo4+ ions on their surface to improve Fenton reaction efficiency, but also endow FeO/MoS2-BSA with good photothermal performances for photothermal-enhanced CDT and photothermal therapy (PTT). Consequently, benefiting from the synergetic-enhanced CDT/PTT, the tumors are eradicated completely in vivo. This work provides innovative synergistic strategy for constructing nanocomposites for highly efficient CDT.


2014 ◽  
Vol 26 (48) ◽  
pp. 8210-8216 ◽  
Author(s):  
Mei Chen ◽  
Shaoheng Tang ◽  
Zhide Guo ◽  
Xiaoyong Wang ◽  
Shiguang Mo ◽  
...  

2021 ◽  
Vol 22 (22) ◽  
pp. 12214
Author(s):  
Cheng-Liang Peng ◽  
Ying-Hsia Shih ◽  
Ping-Fang Chiang ◽  
Chun-Tang Chen ◽  
Ming-Cheng Chang

Cancer is one of the leading causes of death in the world. A cancer-targeted multifunctional probe labeled with the radionuclide has been developed to provide multi-modalities for NIR fluorescence and nuclear imaging (PET, SPECT), for photothermal therapy (PTT), and targeted radionuclide therapy of cancer. In this study, synthesis, characterization, in vitro, and in vivo biological evaluation of the cyanine-based probe (DOTA-NIR790) were demonstrated. The use of cyanine dyes for the selective accumulation of cancer cells were used to achieve the characteristics of tumor markers. Therefore, all kinds of organ tumors can be targeted for diagnosis and treatment. The DOTA-NIR790 labeled with lutetium-111 could detect original or metastatic tumors by using SPECT imaging and quantify tumor accumulation. The β-emission of 177Lu-DOTA-NIR790 can be used for targeted radionuclide therapy of tumors. The DOTA-NIR790 enabled imaging by NIR fluorescence and by nuclear imaging (SPECT) to monitor in real-time the tumor accumulation and the situation of cancer therapy, and to guide the surgery or the photothermal therapy of the tumor. The radionuclide-labeled heptamethine cyanine based probe (DOTA-NIR790) offers multifunctional modalities for imaging and therapies of cancer.


Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1990
Author(s):  
Kai Zhang ◽  
Jingjing Li ◽  
Xiaofei Xin ◽  
Xiaoqing Du ◽  
Di Zhao ◽  
...  

The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.


Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 810-810 ◽  
Author(s):  
Haiying Qin ◽  
Sang M Nguyen ◽  
Sneha Ramakrishna ◽  
Samiksha Tarun ◽  
Lila Yang ◽  
...  

Abstract Treatment of pre-B cell acute lymphoblastic leukemia (ALL) using chimeric antigen receptor expressing T cells (CART) targeting CD19 have demonstrated impressive clinical results in children and young adults with up to 70-90% complete remission rate in multiple clinical trials. However, about 30% of patients relapse due to loss of the targeted epitope on CD19 or CART failure. Our CD22-targeted CAR trial has generated promising results in relapsed/refractory ALL, including CD19 antigen negative ALL, but relapse associated with decreased CD22 site density has occurred. Thus, developing strategies to prevent relapses due to changes in antigen expression have the potential to increase the likelihood of durable remissions. In addition, dual targeting of both CD19 and CD22 on pre-B ALL may be synergistic compared to targeting a single antigen, a potential approach to improve efficacy in patients with heterogeneous expression of CD19 and CD22 on leukemic blasts. We describe the systematic development and comparison of the structure and therapeutic function of three different types (over 15 different constructs) of novel CARs targeting both CD19 and CD22: (1) Bivalent Tandem CAR, (2) Bivalent Loop CAR, and (3) Bicistronic CAR. These dual CARs were assembled using CD19- and CD22-binding single chain fragment variable (scFv) regions derived from clinically validated single antigen targeted CARs. They are structurally different in design: both tandem and loop CARs have the CD19 and CD22 scFv covalently linked in the same CAR in different orders, whereas, bicistronic CARs have 2 complete CAR constructs connected with a cleavable linker. The surface expression on the transduced T cell of the CD19/CD22 dual CARs was detected with CD22 Fc and anti-idiotype of CD19 and compared to single CD19 or CD22 CARs. Activities of dual CARs to either CD19 or CD22 were evaluated in vitro with cytotoxicity assays or killing assays against K562 cells expressing either CD19 or CD22 or both antigens and also tested against a leukemia CD19+/CD22+ cell line, NALM6, and NALM6 with CRISPER/CAS9 knockout of CD19 or CD22 or both antigens. Therapeutic function of the top candidates of the dual CARs was then validated in vivo against these NALM6 leukemia lines. Some of these dual CARs were also further tested against patient-derived xenografts. Finally, we tested the dual targeting CARs in an artificial relapse model in which mice were co-injected with a mix of CD19 knockout and CD22 knockout NALM6 leukemia lines. From these studies, we established that the order of the scFv, size of the linker, type of leader sequence, and co-stimulatory domain in the CAR constructs all impact the efficacy of the dual targeting CARs. Tandem, Loop, and Bicistronic CARs all demonstrate some levels of in vitro and in vivo activities, but the bicistronic CAR was most effective at clearing leukemia and preventing relapse. In the CD19+/CD22+ NALM6 model, bicistronic CAR treated mice remain disease free while CD19 CAR or CD22 CAR treated mice already died or relapsed on day 27. In the relapse model, as expected, CD19 or CD22 single CAR T cell treatment resulted in progression of the corresponding antigen-negative NALM6. Treatment with dual targeted bicistronic CARs resulted in clearance of both CD19 and CD22 negative ALL with durable remission. In summary, we described novel CD19/CD22 dual targeting CARs with robust pre-clinical activity against pre-B cell ALL, and validated this approach in the prevention of resistance to single-antigen targeted CARs in preclinical models. Disclosures No relevant conflicts of interest to declare.


Sign in / Sign up

Export Citation Format

Share Document