scholarly journals Dual Targeting of Cancer Cells and MMPs with Self-Assembly Hybrid Nanoparticles for Combination Therapy in Combating Cancer

Pharmaceutics ◽  
2021 ◽  
Vol 13 (12) ◽  
pp. 1990
Author(s):  
Kai Zhang ◽  
Jingjing Li ◽  
Xiaofei Xin ◽  
Xiaoqing Du ◽  
Di Zhao ◽  
...  

The co-delivery of chemotherapeutic agents and immune modulators to their targets remains to be a great challenge for nanocarriers. Here, we developed a hybrid thermosensitive nanoparticle (TMNP) which could co-deliver paclitaxel-loaded transferrin (PTX@TF) and marimastat-loaded thermosensitive liposomes (MMST/LTSLs) for the dual targeting of cancer cells and the microenvironment. TMNPs could rapidly release the two payloads triggered by the hyperthermia treatment at the site of tumor. The released PTX@TF entered cancer cells via transferrin-receptor-mediated endocytosis and inhibited the survival of tumor cells. MMST was intelligently employed as an immunomodulator to improve immunotherapy by inhibiting matrix metalloproteinases to reduce chemokine degradation and recruit T cells. The TMNPs promoted the tumor infiltration of CD3+ T cells by 2-fold, including memory/effector CD8+ T cells (4.2-fold) and CD4+ (1.7-fold), but not regulatory T cells. Our in vivo anti-tumor experiment suggested that TMNPs possessed the highest tumor growth inhibitory rate (80.86%) compared with the control group. We demonstrated that the nanoplatform could effectively inhibit the growth of tumors and enhance T cell recruitment through the co-delivery of paclitaxel and marimastat, which could be a promising strategy for the combination of chemotherapy and immunotherapy for cancer treatment.

2021 ◽  
Vol 12 (1) ◽  
Author(s):  
Sara El-Sahli ◽  
Khang Hua ◽  
Andrew Sulaiman ◽  
Jason Chambers ◽  
Li Li ◽  
...  

AbstractTriple-negative breast cancer (TNBC) is the most aggressive subtype of breast cancer, accounting for the majority of breast cancer-related death. Due to the lack of specific therapeutic targets, chemotherapeutic agents (e.g., paclitaxel) remain the mainstay of systemic treatment, but enrich a subpopulation of cells with tumor-initiating capacity and stem-like characteristics called cancer stem cells (CSCs); thus development of a new and effective strategy for TNBC treatment is an unmet medical need. Cancer nanomedicine has transformed the landscape of cancer drug development, allowing for a high therapeutic index. In this study, we developed a new therapy by co-encapsulating clinically approved drugs, such as paclitaxel, verteporfin, and combretastatin (CA4) in polymer-lipid hybrid nanoparticles (NPs) made of FDA-approved biomaterials. Verteporfin is a drug used in the treatment of macular degeneration and has recently been found to inhibit the Hippo/YAP (Yes-associated protein) pathway, which is known to promote the progression of breast cancer and the development of CSCs. CA4 is a vascular disrupting agent and has been tested in phase II/III of clinical trials. We found that our new three drug-NP not only effectively inhibited TNBC cell viability and cell migration, but also significantly diminished paclitaxel-induced and/or CA4-induced CSC enrichment in TNBC cells, partially through inhibiting the upregulated Hippo/YAP signaling. Combination of verteporfin and CA4 was also more effective in suppressing angiogenesis in an in vivo zebrafish model than single drug alone. The efficacy and application potential of our triple drug-NPs were further assessed by using clinically relevant patient-derived xenograft (PDX) models. Triple drug-NP effectively inhibited the viability of PDX organotypic slide cultures ex vivo and stopped the growth of PDX tumors in vivo. This study developed an approach capable of simultaneously inhibiting bulk cancer cells, CSCs, and angiogenesis.


2019 ◽  
Vol 37 (4_suppl) ◽  
pp. 293-293
Author(s):  
Naoki Okada ◽  
Ko Sugiyama ◽  
Hidemitsu Kitamura ◽  
Akinobu Taketomi

293 Background: Diacylglycerol kinases (DGKs), lipid kinases transforming diacylglycerol to phosphatidic acid, play important roles in intracellular signal transduction. Diacylglycerol kinase alpha (DGKa), an isozyme of DGKs, is well-known to promote proliferation of cancer cells by suppression of the apoptosis. Additionally, a previous report demonstrated that activation of DGKa induced anergy state of T lymphocytes in vivo. In this study, we investigated whether inhibition of DGKa not only suppress the tumorigenesis of cancer cells but also activate anti-tumor immunity. Methods: We first investigated the effect of DGKa inhibitor on in vitro proliferation of murine hepatoma cell lines (Hepa1-6) by cell proliferation assay. Cytokine and Granzyme B productions by CD8+ T cells from OT-1 mice after the OVA antigen stimulation were evaluated by ELISA and flowcytometry, respectively. Next, we established a tumor-bearing mice model by injection of mCherry-transfected Hepa1-6 cells into spleen. Tumorigenesis and tumor-infiltrating T cells in the liver were evaluated by in vivo imaging system, HE staining, and immunohistochemistry. CD8+ T cells were collected from the liver and stimulated with PMA and Ca2+ ionophore and the IFN-g production levels were evaluated by flowcytometry. Results: Proliferation of Hepa1-6 cells were suppressed in the presence of DGKa inhibitor in vitro. IL-2 production levels of OT-1 CD8 T cells in control group was augmented by the addition of DGKa inhibitor (246 vs 579 pg/ml, p < 0.05). Granzyme B-positive cells in OT-1 CD8+ T cells were increased by the treatment with DGKa inhibitor compared to the control group (4.4 vs 8.9 %, P < 0.05) after the antigen stimulation. In vivo administration of DGKa inhibitor significantly suppressed the tumor size (fluorescence (AU) 2.0x1010 vs 6.3x109, area (μm2) 1.5x107 vs 0.9x107, p < 0.05) in the liver of tumor bearing mice. Then, the number of tumor-infiltrating T cells (582 vs 1506, 5 HPF, p < 0.05) and the IFN-g-producing cells (9.2 vs 16.0 %) in CD8+ T cells were elevated by the DGKa treatment. Conclusions: Inhibition of DGKa not only suppressed the proliferation of hepatoma but also activated anti-tumor effector T cells in vivo.


2020 ◽  
Vol 8 (Suppl 3) ◽  
pp. A799-A799
Author(s):  
Dhiraj Kumar ◽  
Sreeharsha Gurrapu ◽  
Hyunho Han ◽  
Yan Wang ◽  
Seongyeon Bae ◽  
...  

BackgroundLong non-coding RNAs (lncRNAs) are involved in various biological processes and diseases. Malat1 (metastasis-associated lung adenocarcinoma transcript 1), also known as Neat2, is one of the most abundant and highly conserved nuclear lncRNAs. Several studies have shown that the expression of lncRNA Malat1 is associated with metastasis and serving as a predictive marker for various tumor progression. Metastatic relapse often develops years after primary tumor removal as a result of disseminated tumor cells undergoing a period of latency in the target organ.1–4 However, the correlation of tumor intrinsic lncRNA in regulation of tumor dormancy and immune evasion is largely unknown.MethodsUsing an in vivo screening platform for the isolation of genetic entities involved in either dormancy or reactivation of breast cancer tumor cells, we have identified Malat1 as a positive mediator of metastatic reactivation. To functionally uncover the role of Malat1 in metastatic reactivation, we have developed a knock out (KO) model by using paired gRNA CRISPR-Cas9 deletion approach in metastatic breast and other cancer types, including lung, colon and melanoma. As proof of concept we also used inducible knockdown system under in vivo models. To delineate the immune micro-environment, we have used 10X genomics single cell RNA-seq, ChIRP-seq, multi-color flowcytometry, RNA-FISH and immunofluorescence.ResultsOur results reveal that the deletion of Malat1 abrogates the tumorigenic and metastatic potential of these tumors and supports long-term survival without affecting their ploidy, proliferation, and nuclear speckles formation. In contrast, overexpression of Malat1 leads to metastatic reactivation of dormant breast cancer cells. Moreover, the loss of Malat1 in metastatic cells induces dormancy features and inhibits cancer stemness. Our RNA-seq and ChIRP-seq data indicate that Malat1 KO downregulates several immune evasion and stemness associated genes. Strikingly, Malat1 KO cells exhibit metastatic outgrowth when injected in T cells defective mice. Our single-cell RNA-seq cluster analysis and multi-color flow cytometry data show a greater proportion of T cells and reduce Neutrophils infiltration in KO mice which indicate that the immune microenvironment playing an important role in Malat1-dependent immune evasion. Mechanistically, loss of Malat1 is associated with reduced expression of Serpinb6b, which protects the tumor cells from cytotoxic killing by the T cells. Indeed, overexpression of Serpinb6b rescued the metastatic potential of Malat1 KO cells by protecting against cytotoxic T cells.ConclusionsCollectively, our data indicate that targeting this novel cancer-cell-initiated domino effect within the immune system represents a new strategy to inhibit tumor metastatic reactivation.Trial RegistrationN/AEthics ApprovalFor all the animal studies in the present study, the study protocols were approved by the Institutional Animal Care and Use Committee(IACUC) of UT MD Anderson Cancer Center.ConsentN/AReferencesArun G, Diermeier S, Akerman M, et al., Differentiation of mammary tumors and reduction in metastasis upon Malat1 lncRNA loss. Genes Dev 2016 Jan 1;30(1):34–51.Filippo G. Giancotti, mechanisms governing metastatic dormancy and reactivation. Cell 2013 Nov 7;155(4):750–764.Gao H, Chakraborty G, Lee-Lim AP, et al., The BMP inhibitor Coco reactivates breast cancer cells at lung metastatic sites. Cell 2012b;150:764–779.Gao H, Chakraborty G, Lee-Lim AP, et al., Forward genetic screens in mice uncover mediators and suppressors of metastatic reactivation. Proc Natl Acad Sci U S A 2014 Nov 18; 111(46): 16532–16537.


2021 ◽  
Author(s):  
Liyuan Hao ◽  
Yinglin Guo ◽  
Qing Peng ◽  
Zhiqin Zhang ◽  
Shenghao Li ◽  
...  

Abstract Hepatocellular carcinoma (HCC) was one of the most malignant cancers in the world. Cisplatin (DDP) was one of the main chemotherapy drugs for HCC, but the mechanism of DDP treatment for HCC remains unclear. In this presentation, we found that DDP inhibited the growth of HCC cells and promoted the expression of PD-1 and its ligand PD-L1 in cancer cells. Meanwhile, flow cytometry analysis revealed that DDP enhanced PD-1-CD8+ T cells expression and decreased PD-1+CD8+ T cells expression. ELISA analysis suggested that DDP decreased TGF-β expression in vivo. Therefore, the study indicated that DDP enhanced PD-1 and PD-L1 expression and inhibited the growth of HCC.


Blood ◽  
1999 ◽  
Vol 93 (9) ◽  
pp. 3140-3147 ◽  
Author(s):  
Joshua A. Grass ◽  
Tamim Wafa ◽  
Aaron Reames ◽  
David Wages ◽  
Laurence Corash ◽  
...  

Abstract Photochemical treatment (PCT) with the psoralen S-59 and long wavelength ultraviolet light (UVA) inactivates high titers of contaminating viruses, bacteria, and leukocytes in human platelet concentrates. The present study evaluated the efficacy of PCT to prevent transfusion-associated graft-versus-host disease (TA-GVHD) in vivo using a well-characterized parent to F1 murine transfusion model. Recipient mice in four treatment groups were transfused with 108 splenic leukocytes. (1) Control group mice received syngeneic splenic leukocyte transfusions; (2) GVHD group mice received untreated allogeneic splenic leukocytes; (3) gamma radiation group mice received gamma irradiated (2,500 cGy) allogeneic splenic leukocytes; and (4) PCT group mice received allogeneic splenic leukocytes treated with 150 μmol/L S-59 and 2.1 J/cm2UVA. Multiple biological and clinical parameters were used to monitor the development of TA-GVHD in recipient mice over a 10-week posttransfusion observation period: peripheral blood cell levels, spleen size, engraftment by donor T cells, thymic cellularity, clinical signs of TA-GVHD (weight loss, activity, posture, fur texture, skin integrity), and histologic lesions of liver, spleen, bone marrow, and skin. Mice in the control group remained healthy and free of detectable disease. Mice in the GVHD group developed clinical and histological lesions of TA-GVHD, including pancytopenia, marked splenomegaly, wasting, engraftment with donor derived T cells, and thymic hypoplasia. In contrast, mice transfused with splenic leukocytes treated with (2,500 cGy) gamma radiation or 150 μmol/L S-59 and 2.1 J/cm2 UVA remained healthy and did not develop detectable TA-GVHD. Using an in vitro T-cell proliferation assay, greater than 105.1 murine T cells were inactivated by PCT. Therefore, in addition to inactivating high levels of pathogenic viruses and bacteria in PC, these data indicate that PCT is an effective alternative to gamma irradiation for prevention of TA-GVHD.


2020 ◽  
Vol 6 (28) ◽  
pp. eaba5855 ◽  
Author(s):  
Veronika Magdanz ◽  
Islam S. M. Khalil ◽  
Juliane Simmchen ◽  
Guilherme P. Furtado ◽  
Sumit Mohanty ◽  
...  

We develop biohybrid magnetic microrobots by electrostatic self-assembly of nonmotile sperm cells and magnetic nanoparticles. Incorporating a biological entity into microrobots entails many functional advantages beyond shape templating, such as the facile uptake of chemotherapeutic agents to achieve targeted drug delivery. We present a single-step electrostatic self-assembly technique to fabricate IRONSperms, soft magnetic microswimmers that emulate the motion of motile sperm cells. Our experiments and theoretical predictions show that the swimming speed of IRONSperms exceeds 0.2 body length/s (6.8 ± 4.1 µm/s) at an actuation frequency of 8 Hz and precision angle of 45°. We demonstrate that the nanoparticle coating increases the acoustic impedance of the sperm cells and enables localization of clusters of IRONSperm using ultrasound feedback. We also confirm the biocompatibility and drug loading ability of these microrobots, and their promise as biocompatible, controllable, and detectable biohybrid tools for in vivo targeted therapy.


2020 ◽  
Vol 117 (37) ◽  
pp. 22910-22919
Author(s):  
Xingkang He ◽  
Xin Yin ◽  
Jing Wu ◽  
Stina L. Wickström ◽  
Yanhong Duo ◽  
...  

Lymphocyte-based immunotherapy has emerged as a breakthrough in cancer therapy for both hematologic and solid malignancies. In a subpopulation of cancer patients, this powerful therapeutic modality converts malignancy to clinically manageable disease. However, the T cell- and chimeric antigen receptor T (CAR-T) cell-mediated antimetastatic activity, especially their impacts on microscopic metastatic lesions, has not yet been investigated. Here we report a living zebrafish model that allows us to visualize the metastatic cancer cell killing effect by tumor- infiltrating lymphocytes (TILs) and CAR-T cells in vivo at the single-cell level. In a freshly isolated primary human melanoma, specific TILs effectively eliminated metastatic cancer cells in the living body. This potent metastasis-eradicating effect was validated using a human lymphoma model with CAR-T cells. Furthermore, cancer-associated fibroblasts protected metastatic cancer cells from T cell-mediated killing. Our data provide an in vivo platform to validate antimetastatic effects by human T cell-mediated immunotherapy. This unique technology may serve as a precision medicine platform for assessing anticancer effects of cellular immunotherapy in vivo before administration to human cancer patients.


2019 ◽  
Vol 18 (1) ◽  
Author(s):  
Xiaokun Wang ◽  
Dongjuan Qiao ◽  
Likun Chen ◽  
Meng Xu ◽  
Shupeng Chen ◽  
...  

Abstract Background Chemotherapy is a widely used treatment for cancer. However, the development of acquired multidrug resistance (MDR) is a serious issue. Emerging evidence has shown that the extracellular vesicles (EVs) mediate MDR, but the underlying mechanism remains unclear, especially the effects of chemotherapeutic agents on this process. Methods Extracellular vesicles isolation was performed by differential centrifugation. The recipient cells that acquired ATP-binding cassette sub-family B member 1 (ABCB1) proteins were sorted out from co-cultures according to a stringent multi-parameter gating strategy by fluorescence-activated cell sorting (FACS). The transfer rate of ABCB1 was measured by flow cytometry. The xenograft tumor models in mice were established to evaluate the transfer of ABCB1 in vivo. Gene expression was detected by real-time PCR and Western blotting. Results Herein, we show that a transient exposure to chemotherapeutic agents can strikingly increase Rab8B-mediated release of extracellular vesicles (EVs) containing ABCB1 from drug-resistant cells, and accelerate these EVs to circulate back onto plasma membrane of sensitive tumor cells via the down-regulation of Rab5. Therefore, intercellular ABCB1 transfer is significantly enhanced; sensitive recipient cells acquire a rapid but unsustainable resistance to evade the cytotoxicity of chemotherapeutic agents. More fascinatingly, in the xenograft tumor models, chemotherapeutical drugs also locally or distantly increase the transfer of ABCB1 molecules. Furthermore, some Non-small-cell lung carcinoma (NSCLC) patients who are undergoing primary chemotherapy have a rapid increase of ABCB1 protein in their monocytes, and this is obviously associated with poor chemotherapeutic efficacy. Conclusions Chemotherapeutic agents stimulate the secretion and recycling of ABCB1-enriched EVs through the dysregulation of Rab8B and Rab5, leading to a significant increase of ABCB1 intercellular transfer, thus assisting sensitive cancer cells to develop an urgent resistant phenotype. Our findings provide a new molecular mechanism of how chemotherapeutic drugs assist sensitive cancer cells in acquiring an urgent resistance.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Richard Komakech ◽  
Youngmin Kang ◽  
Jun-Hwan Lee ◽  
Francis Omujal

Prostate cancer remains one of the major causes of death worldwide. In view of the limited treatment options for patients with prostate cancer, preventive and treatment approaches based on natural compounds can play an integral role in tackling this disease. Recent evidence supports the beneficial effects of plant-derived phytochemicals as chemopreventive and chemotherapeutic agents for various cancers, including prostate cancer. Prunus africana has been used for generations in African traditional medicine to treat prostate cancer. This review examined the potential roles of the phytochemicals from P. africana, an endangered, sub-Saharan Africa plant in the chemoprevention and chemotherapy of prostate cancer. In vitro and in vivo studies have provided strong pharmacological evidence for antiprostate cancer activities of P. africana-derived phytochemicals. Through synergistic interactions between different effective phytochemicals, P. africana extracts have been shown to exhibit very strong antiandrogenic and antiangiogenic activities and have the ability to kill tumor cells via apoptotic pathways, prevent the proliferation of prostate cancer cells, and alter the signaling pathways required for the maintenance of prostate cancer cells. However, further preclinical and clinical studies ought to be done to advance and eventually use these promising phytochemicals for the prevention and chemotherapy of human prostate cancer.


Blood ◽  
2004 ◽  
Vol 104 (11) ◽  
pp. 3477-3477
Author(s):  
Juan M. Zapata ◽  
Christina L. Kress ◽  
Marina Konopleva ◽  
Maryla Krajewska ◽  
Mark Hyer ◽  
...  

Abstract Transgenic mice over-expressing in B lymphocytes both Bcl-2 and a TRAF2 mutant lacking the N-terminal RING and zinc finger domains (TRAF2DN), which mimics TRAF1, develop small B cell lymphoma and leukemia that have remarkably similar characteristics to human chronic lymphocytic leukemia (CLL). TRAF2DN/Bcl-2 mice develop over time leukemia, severe splenomegaly, and lymphadenopathy, which are associated with monoclonal and oligoclonal B cell neoplasms. The lifespan of TRAF2DN/Bcl-2 mice is markedly reduced compared to Bcl-2 and TRAF2DN single transgenics or wild-type littermates. The expanded B cell population in the blood of leukemic TRAF2DN/Bcl-2 double transgenic mice is primarily comprised of small-medium size, non-cycling B220M/IgMH/IgDL/CD21L/CD23−/CD11b+/CD5+ cells that were Bcl-6 negative, consistent with a B-1 phenotype, closely resembling their human CLL counterparts. Indeed, these B cells showed comparable proliferation rates to normal B-cells, but exhibited markedly increased survival and were resistant to apoptosis induced by chemotherapeutic agents and glucocorticoids. We studied the effects of synthetic triterpenoid 2-Cyano-3,12-Dioxooleana-1,9-Dien-28-Oic Acid (CDDO) and its imidazolide derivative (CDDO-Im) on cultured B-cells from the TRAF2DN/Bcl-2 transgenic mice. Both CDDO and CDDO-Im efficiently induced apoptosis of these cells in vitro, although CDDO-Im was approximately 10-times more potent than CDDO (LD50: 0.35μM CDDO-Im vs 3.8 μM CDDO). To study the effect of CDDO and CDDO-Im in vivo, groups of TRAF2DN/Bcl-2 mice that had developed leukemia were injected i.v. with liposomes alone or liposomes containing either CDDO or CDDO-Im, at a dose of 20 mg/kg/day. Each mouse received a total of nine injections administered over a period of 22 days. The concentration of B cells in the blood of these mice was monitored daily after each injection, using a mini-FACS (Guava Technologies, Inc.). CDDO-treated mice showed a steady reduction in the number of leukemic cells in blood during the treatment and this tendency was maintained 10 days after the last treatment. In contrast, CDDO-Im treated mice showed a striking increase in the concentration of B cells in blood (B220+ events) immediately after the first inoculation. One mouse of this group died after the first injection, and 2 more mice died after 5 injections. Only 2 mice treated with CDDO-Im survived the full treatment, showing a striking reduction of leukemic cells in blood by the end of the treatment. Administration of empty liposomes had no inhibitory effect on the leukemia, and mice in this control group had massive splenomegaly (1431±323 mg; n=3) and severe disseminated lymphadenopathy. In contrast, CDDO-treated mice had less severe splenomegaly (938±234; n=4) but still had severe lymphadenopathy. CDDO-Im treated mice showed a dramatic reduction in the spleen size that was evident also in those mice that died after 5 injections (474±185 mg; n=4) and had no signs of lymphadenopathy. Although preliminary, these results indicate that in vivo administration of CDDO and CDDO-Im reduced the tumor burden in a transgenic model of CLL, and illustrate the potential of triterpenoids as single agents for the treatment of CLL.


Sign in / Sign up

Export Citation Format

Share Document