Nanoparticle modification of microfluidic cell separation for cancer cell detection and isolation

The Analyst ◽  
2020 ◽  
Vol 145 (1) ◽  
pp. 257-267 ◽  
Author(s):  
Yun Zhou ◽  
Ziye Dong ◽  
Hermella Andarge ◽  
Wei Li ◽  
Dimitri Pappas

We present a nanoparticle surface modification approach to improve the microfluidic performance in detecting cancer cells. Multiple cancer cell lines were included in this work, and the capture ability of the chip with surface modification reached a significant increase.

2020 ◽  
Vol 11 (1) ◽  
pp. 561-566
Author(s):  
Syed Shameem ◽  
RamaKrishna T V ◽  
Sahithi M ◽  
Rohitha B ◽  
Keerthana J ◽  
...  

Cancer refers to any of countless infections characterized by the development of abnormal cells that divide uncontrollably and can invade and destroy normal body tissue. Malignant growth frequently can spread all through your body. Cancer is the second driving reason for death on the planet. In this paper, we propose to found a H-cell to screen carcinogenic cells in a given sample of blood based on the principle of diffusion. This model incorporates the planning of a MEMS-based microfluidic channel to screen and recognize different cells depending on the size and various characteristics of the cells. Some of the methods which are implemented not efficient models for cancer cells detection in blood. The mass, displacement technique has been implemented in this investigation for cancer cell detection, with the help of this achieves the accuracy and better throughput. One cancer cell contains = 1.70371e-24 mass, such that with a weight of this formula, find out the total no of cells in the blood. This is the best method compared to existed methods. Using this count, the weight has been calculate early-stage cancer and treatment with a simple manner, CTCs in the blood is the un potential matter for health, H-cells have been measured with proposed weight and force technique such that in this investigation also calculate the healthy and cancer cells also. Finally, using this methodology achieves 93.58% accuracy, 0.00124 MSE. These are very good results compared to conventional methods.


Cancers ◽  
2021 ◽  
Vol 13 (23) ◽  
pp. 5881
Author(s):  
Sara R. Bang-Christensen ◽  
Viatcheslav Katerov ◽  
Amalie M. Jørgensen ◽  
Tobias Gustavsson ◽  
Swati Choudhary ◽  
...  

Analysis of circulating tumor cells (CTCs) from blood samples provides a non-invasive approach for early cancer detection. However, the rarity of CTCs makes it challenging to establish assays with the required sensitivity and specificity. We combine a highly sensitive CTC capture assay exploiting the cancer cell binding recombinant malaria VAR2CSA protein (rVAR2) with the detection of colon-related mRNA transcripts (USH1C and CKMT1A). Cancer cell transcripts are detected by RT-qPCR using proprietary Target Enrichment Long-probe Quantitative Amplified Signal (TELQAS) technology. We validate each step of the workflow using colorectal cancer (CRC) cell lines spiked into blood and compare this with antibody-based cell detection. USH1C and CKMT1A are expressed in healthy colon tissue and CRC cell lines, while only low-level expression can be detected in healthy white blood cells (WBCs). The qPCR reaction shows a near-perfect amplification efficiency for all primer targets with minimal interference of WBC cDNA. Spike-in of 10 cancer cells in 3 mL blood can be detected and statistically separated from control blood using the RT-qPCR assay after rVAR2 capture (p < 0.01 for both primer targets, Mann-Whitney test). Our results provide a validated workflow for highly sensitive detection of magnetically enriched cancer cells.


2015 ◽  
Vol 51 (74) ◽  
pp. 14072-14075 ◽  
Author(s):  
Mei-Sheng Wu ◽  
Xiao-Tao Sun ◽  
Meng-Jiao Zhu ◽  
Hong-Yuan Chen ◽  
Jing-Juan Xu

A novel mesoporous silica film-assisted amplification method is reported for the sensitive electrochemiluminescence detection of cancer cells.


2018 ◽  
Vol 18 (01) ◽  
pp. 1830001 ◽  
Author(s):  
CHIYU LI ◽  
WANG LI ◽  
CHUNYANG GENG ◽  
HAIJUN REN ◽  
XIAOHUI YU ◽  
...  

Since cancer becomes the most deadly disease to our health, research on early detection on cancer cells is necessary for clinical treatment. The combination of microfluidic device with cell biology has shown a unique method for cancer cell research. In the present review, recent development on microfluidic chip for cancer cell detection and diagnosis will be addressed. Some typical microfluidic chips focussed on cancer cells and their advantages for different kinds of cancer cell detection and diagnosis will be listed, and the cell capture methods within the microfluidics will be simultaneously mentioned. Then the potential direction of microfluidic chip on cancer cell detection and diagnosis in the future is also discussed.


2017 ◽  
Vol 53 (15) ◽  
pp. 2398-2401 ◽  
Author(s):  
Jian Chen ◽  
Hong Jiang ◽  
Huipeng Zhou ◽  
Zhenzhen Hu ◽  
Niu Niu ◽  
...  

A specific cancer cell detection method through the aggregation-induced emission of a light-up bioprobe is developed.


The Analyst ◽  
2016 ◽  
Vol 141 (2) ◽  
pp. 652-660 ◽  
Author(s):  
Jennie H. Appel ◽  
Hao Ren ◽  
Mandy L. Y. Sin ◽  
Joseph C. Liao ◽  
Junseok Chae

A high-throughput strategy capable of differentiating bladder cancer cells from non-cancerous cells based on their respective cellular traction forces.


2020 ◽  
Vol 20 (23) ◽  
pp. 2070-2079
Author(s):  
Srimadhavi Ravi ◽  
Sugata Barui ◽  
Sivapriya Kirubakaran ◽  
Parul Duhan ◽  
Kaushik Bhowmik

Background: The importance of inhibiting the kinases of the DDR pathway for radiosensitizing cancer cells is well established. Cancer cells exploit these kinases for their survival, which leads to the development of resistance towards DNA damaging therapeutics. Objective: In this article, the focus is on targeting the key mediator of the DDR pathway, the ATM kinase. A new set of quinoline-3-carboxamides, as potential inhibitors of ATM, is reported. Methods: Quinoline-3-carboxamide derivatives were synthesized and cytotoxicity assay was performed to analyze the effect of molecules on different cancer cell lines like HCT116, MDA-MB-468, and MDA-MB-231. Results: Three of the synthesized compounds showed promising cytotoxicity towards a selected set of cancer cell lines. Western Blot analysis was also performed by pre-treating the cells with quercetin, a known ATM upregulator, by causing DNA double-strand breaks. SAR studies suggested the importance of the electron-donating nature of the R group for the molecule to be toxic. Finally, Western-Blot analysis confirmed the down-regulation of ATM in the cells. Additionally, the PTEN negative cell line, MDA-MB-468, was more sensitive towards the compounds in comparison with the PTEN positive cell line, MDA-MB-231. Cytotoxicity studies against 293T cells showed that the compounds were at least three times less toxic when compared with HCT116. Conclusion: In conclusion, these experiments will lay the groundwork for the evolution of potent and selective ATM inhibitors for the radio- and chemo-sensitization of cancer cells.


2020 ◽  
Vol 17 (11) ◽  
pp. 1330-1341
Author(s):  
Yan Zhang ◽  
Niefang Yu

Background: Fibroblast growth factors (FGFs) and their high affinity receptors (FGFRs) play a major role in cell proliferation, differentiation, migration, and apoptosis. Aberrant FGFR signaling pathway might accelerate development in a broad panel of malignant solid tumors. However, the full application of most existing small molecule FGFR inhibitors has become a challenge due to the potential target mutation. Hence, it has attracted a great deal of attention from both academic and industrial fields for hunting for novel FGFR inhibitors with potent inhibitory activities and high selectivity. Objective: Novel 5-amino-1H-pyrazole-1-carbonyl derivatives were designed, synthesized, and evaluated as FGFR inhibitors. Methods: A series of 5-amino-1H-pyrazole-1-carbonyl derivatives were established by a condensation of the suitable formyl acetonitrile derivatives with either hydrazine or hydrazide derivatives in the presence of anhydrous ethanol or toluene. The inhibitory activities of the target compounds were screened against the FGFRs and two representative cancer cell lines. Tests were carried out to observe the inhibition of 8e against FGFR phosphorylation and downstream signal phosphorylation in human gastric cancer cell lines (SNU-16). The molecular docking of all the compounds were performed using Molecular Operating Environment in order to evaluate their binding abilities with the corresponding protein kinase. Results: A series of 5-amino-1H-pyrazole-1-carbonyl derivatives have been designed and synthesized, screened for their inhibitory activities against FGFRs and cancer cell lines. Most of the target compounds showed moderate to good anti-proliferate activities against the tested enzymes and cell lines. The most promising compounds 8e suppressed FGFR1-3 with IC50 values of 56.4, 35.2, 95.5 nM, and potently inhibited the SNU-16 and MCF-7 cancer cells with IC50 values of 0.71 1.26 μM, respectively. And 8e inhibited the growth of cancer cells containing FGFR activated by multiple mechanisms. In addition, the binding interactions were quite similar in the molecular models between generated compounds and Debio-1347 with the FGFR1. Conclusion: According to the experimental findings, 5-amino-1H-pyrazole-1-carbonyl might serve as a promising template of an FGFR inhibitor.


2019 ◽  
Vol 15 (7) ◽  
pp. 738-742 ◽  
Author(s):  
Adnan Badran ◽  
Atia-tul-Wahab ◽  
Sharmeen Fayyaz ◽  
Elias Baydoun ◽  
Muhammad Iqbal Choudhary

Background:Breast cancer is the most prevalent cancer type in women globally. It is characterized by distinct subtypes depending on different gene expression patterns. Oncogene HER2 is expressed on the surface of cell and is responsible for cell growth regulation. Increase in HER2 receptor protein due to gene amplification, results in aggressive growth, and high metastasis in cancer cells.Methods:The current study evaluates and compares the anti-breast cancer effect of commercially available compounds against HER2 overexpressing BT-474, and triple negative MDA-MB-231 breast cancer cell lines.Results:Preliminary in vitro cell viability assays on these cell lines identified 6 lead molecules active against breast cancer. Convallatoxin (4), a steroidal lactone glycoside, showed the most potent activity with IC50 values of 0.63 ± 0.56, and 0.69 ± 0.59 µM against BT-474 and MDA-MB-231, respectively, whereas 4-[4-(Trifluoromethyl)-phenoxy] phenol (3) a phenol derivative, and Reserpine (5) an indole alkaloid selectively inhibited the growth of BT-474, and MDA-MB-231 breast cancer cells, respectively.Conclusion:These results exhibited the potential of small molecules in the treatment of HER2 amplified and triple negative breast cancers in vitro.


2020 ◽  
Vol 19 (16) ◽  
pp. 1949-1965 ◽  
Author(s):  
Natalia Szkaradek ◽  
Daniel Sypniewski ◽  
Dorota Żelaszczyk ◽  
Sabina Gałka ◽  
Paulina Borzdziłowska ◽  
...  

Background: Natural plant metabolites and their semisynthetic derivatives have been used for years in cancer therapy. Xanthones are oxygenated heterocyclic compounds produced as secondary metabolites by higher plants, fungi or lichens. Xanthone core may serve as a template in the synthesis of many derivatives that have broad biological activities. Objective: This study synthesized a series of 17 new xanthones, and their anticancer potential was also evaluated. Methods: The anticancer potential was evaluated in vitro using a highly invasive T24 cancer cell line. Direct cytotoxic effects of the xanthones were established by IC50 estimation based on XTT assay. Results: 5 compounds of the total 17 showed significant cytotoxicity toward the studied cancer cultures and were submitted to further detailed analysis, including studies examining their influence on gelatinase A and B expression, as well as on the cancer cells migration and adhesion to an extracellular matrix. These analyses were carried out on five human tumor cell lines: A2780 (ovarian cancer), A549 (lung cancer), HeLa (cervical cancer), Hep G2 (liver cancer), and T24 (urinary bladder cancer). All the compounds, especially 4, showed promising anticancer activity: they exhibited significant cytotoxicity towards all the evaluated cell lines, including MCF-7 breast cancer, and hindered migration-motility activity of cancer cells demonstrating more potent activity than α-mangostin which served as a reference xanthone. Conclusion: These results suggest that our xanthone derivatives may be further analyzed in order to include them in cancer treatment protocols.


Sign in / Sign up

Export Citation Format

Share Document