Caulerpa lentilliferapolysaccharides enhance the immunostimulatory activity in immunosuppressed mice in correlation with modulating gut microbiota

2019 ◽  
Vol 10 (7) ◽  
pp. 4315-4329 ◽  
Author(s):  
Yujiao Sun ◽  
Yang Liu ◽  
Chunqing Ai ◽  
Shuang Song ◽  
Xuefeng Chen

Caulerpa lentilliferapolysaccharides could serve as novel prebiotics and immunostimulators, since they improve the immune-related factors and modulate the gut microbiota in cytoxan-induced immunosuppressed mice.

2021 ◽  
Author(s):  
Shuping Chen ◽  
Junqiao Wang ◽  
Qiuyue Fang ◽  
Nan Dong ◽  
Qingying Fang ◽  
...  

A polysaccharide from Cordyceps sinensis (NCSP) was reported to attenuate intestinal injury and regulate balance of T helper (Th)1/Th2 cells in immunosuppressed mice. However, whether it influences Th17 and regulatory...


2020 ◽  
Author(s):  
YeonGyun Jung ◽  
Dorsaf Kerfahi ◽  
Huy Quang Pham ◽  
HyunWoo Son ◽  
Jerald Conrad Ibal ◽  
...  

The gut microbiome is essential to human health. However, little is known about the influence of the environment versus host-related factors (e.g. genetic background, sex, age, and body mass) in the formation of human intestinal microflora. Here, we present evidence in support of the importance of host-related factors in the establishment and maintenance of individual gut assemblages. We collected fecal samples (n = 249) from 44 Korean naval trainees and 39 healthy people living in Korea over eight weeks and sequenced the bacterial 16S rRNA genes. The following hypotheses were tested: 1) microbiome function is linked to its diversity, community structure, and genetic host-related factors, and 2) preexisting host-related factors have a more significant effect on gut microbiome formation and composition than environmental factors. For each individual, the difference between the initial gut microbiota and that after eight weeks was negligible even though the 44 naval trainees lived in the same area and received the same diet, the same amount of exercise, and the same amount of physical stress during the study. This suggests that host-related factors, rather than environmental factors, is a key determinant of individual gut microflora. Moreover, eight weeks of physical training and experiencing the same environmental conditions resulted in an increase in the species Bifidobacterium, Faecalibacterium, and Roseburia in most trainees, suggesting a healthier intestinal environment.


2020 ◽  
Author(s):  
Mubanga Kabwe ◽  
Surendra Vikram ◽  
Khodani Mulaudzi ◽  
Janet Jansson ◽  
Thulani Makhalyane

Abstract Background Understanding the structure and drivers of gut microbiota remains a major ecological endeavour. Recent studies have shown that several factors including diet, lifestyle and geography may substantially shape the human gut microbiota. However, most of these studies have focused on the more abundant bacterial component and comparatively less is known regarding fungi in the human gut. This knowledge deficit is especially true for rural and urban African populations. Therefore, we assessed the structure and drivers of rural and urban gut mycobiota. Results Our participants (n=100) were balanced by geography and sex. The mycobiota of these geographically separated cohorts was characterized using amplicon analysis of the Internal Transcribed Spacer (ITS) gene. We further assessed biomarker species specific to rural and urban cohorts. In addition to phyla which have been shown to be ubiquitous constituents of gut microbiota, Pichia were key constituents of the mycobiota. We found that several factors including geographic location and lifestyle factors such as the smoking status were major drivers of gut mycobiota. Linear discriminant and the linear discriminant analysis effect size analysis revealed several distinct urban and rural biomarkers. Conclusions Together, our analysis reveals distinct community structure in urban and rural South African individuals. Geography and lifestyle related factors were shown to be key drivers of rural and urban gut microbiota.


Metabolites ◽  
2020 ◽  
Vol 10 (12) ◽  
pp. 500
Author(s):  
Ryan du Preez ◽  
Marwan E. Majzoub ◽  
Torsten Thomas ◽  
Sunil K. Panchal ◽  
Lindsay Brown

Caulerpa lentillifera (sea grapes) is widely consumed in South-East Asia as a low-energy food with high contents of vitamins and minerals. This study investigated dried sea grapes containing 16.6% insoluble fibre commercially produced in Vietnam as an intervention. We hypothesised that insoluble fibre is the primary metabolite that will reverse diet-induced metabolic syndrome. Male Wistar rats (n = 48) were randomly allocated to four groups in a 16 week protocol. Two groups were fed either corn starch (C) or high-carbohydrate, high-fat (H) diets for the full 16 weeks. The other two groups received C and H diets for eight weeks and then received C. lentillifera added to these diets for the final eight weeks (CCL and HCL, respectively). High-carbohydrate, high-fat diet-fed rats developed obesity, hypertension, dyslipidaemia, fatty liver disease and increased left ventricular collagen deposition. C. lentillifera supplementation in HCL rats decreased body weight, systolic blood pressure, plasma concentrations of total cholesterol and non-esterified fatty acids, inflammatory cells in heart and liver, and visceral adiposity. The Firmicutes to Bacteroidetes ratio decreased in the gut microbiota of HCL rats. Therefore, C. lentillifera attenuated cardiovascular and metabolic symptoms of metabolic syndrome in rats, possibly by preventing infiltration of inflammatory cells together with modulating gut microbiota.


2022 ◽  
Vol 12 ◽  
Author(s):  
Sajid Ur Rahman ◽  
Haiyan Gong ◽  
Rongsheng Mi ◽  
Yan Huang ◽  
Xiangan Han ◽  
...  

Cryptosporidium parvum infection is very common in infants, immunocompromised patients, or in young ruminants, and chitosan supplementation exhibits beneficial effects against the infection caused by C. parvum. This study investigated whether chitosan supplementation modulates the gut microbiota and mediates the TLR4/STAT1 signaling pathways and related cytokines to attenuate C. parvum infection in immunosuppressed mice. Immunosuppressed C57BL/6 mice were divided into five treatment groups. The unchallenged mice received a basal diet (control), and three groups of mice challenged with 1 × 106 C. parvum received a basal diet, a diet supplemented with 50 mg/kg/day paromomycin, and 1 mg/kg/day chitosan, and unchallenged mice treated with 1 mg/kg/day chitosan. Chitosan supplementation regulated serum biochemical indices and significantly (p < 0.01) reduced C. parvum oocyst excretion in infected mice treated with chitosan compared with the infected mice that received no treatment. Chitosan-fed infected mice showed significantly (p < 0.01) decreased mRNA expression levels of interferon-gamma (IFN-γ) and tumor necrosis factor-α (TNF-α) compared to infected mice that received no treatment. Chitosan significantly inhibited TLR4 and upregulated STAT1 protein expression (p < 0.01) in C. parvum-infected mice. 16S rRNA sequencing analysis revealed that chitosan supplementation increased the relative abundance of Bacteroidetes/Bacteroides, while that of Proteobacteria, Tenericutes, Defferribacteres, and Firmicutes decreased (p < 0.05). Overall, the findings revealed that chitosan supplementation can ameliorate C. parvum infection by remodeling the composition of the gut microbiota of mice, leading to mediated STAT1/TLR4 up- and downregulation and decreased production of IFN-γ and TNF-α, and these changes resulted in better resolution and control of C. parvum infection.


2020 ◽  
Author(s):  
Mubanga Hellen Kabwe ◽  
Surendra Vikram ◽  
Khodani Mulaudzi ◽  
Janet K. Jansson ◽  
Thulani P. Makhalanyane

AbstractUnderstanding the structure and drivers of gut microbiota remains a major ecological endeavour. Recent studies have shown that several factors including diet, lifestyle and geography may substantially shape the human gut microbiota. However, most of these studies have focused on the more abundant bacterial component and comparatively less is known regarding fungi in the human gut. This knowledge deficit is especially true for rural and urban African populations. Therefore, we assessed the structure and drivers of rural and urban gut mycobiota. Our participants (n=100) were balanced by geography and sex. The mycobiota of these geographically separated cohorts was characterized using amplicon analysis of the Internal Transcribed Spacer (ITS) gene. We further assessed biomarker species specific to rural and urban cohorts. In addition to phyla which have been shown to be ubiquitous constituents of gut microbiota, Pichia were key constituents of the mycobiota. We found that several factors including geographic location and lifestyle factors such as the smoking status were major drivers of gut mycobiota. Linear discriminant and the linear discriminant analysis effect size analysis revealed several distinct urban and rural biomarkers. Together, our analysis reveals distinct community structure in urban and rural South African individuals. Geography and lifestyle related factors were shown to be key drivers of rural and urban gut microbiota.ImportanceThe past decade has revealed substantial insights regarding the ecological patterns of gut microbiomes. These studies have shown clear differences between the microbiomes of individuals living in urban and rural locations. Yet, in contrast to bacteria we know substantially less regarding the fungal gut microbiota (mycobiome). Here we provide the first insights regarding the mycobiome of individuals from urban and rural locations. We show that these communities are geographically structured. Further we show that lifestyle factors, such as diet and smoking, are strong drivers explaining community variability.


PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e1514 ◽  
Author(s):  
Jun Chen ◽  
Euijung Ryu ◽  
Matthew Hathcock ◽  
Karla Ballman ◽  
Nicholas Chia ◽  
...  

The clinical utility of microbiome biomarkers depends on the reliable and reproducible nature of comparative results. Underappreciation of the variation associated with common demographic, health, and behavioral factors may confound associations of interest and generate false positives. Here, we present the Midwestern Reference Panel (MWRP), a resource for comparative gut microbiome studies conducted in the Midwestern United States. We analyzed the relationships between demographic and health behavior-related factors and the microbiota in this cohort, and estimated their effect sizes. Most variables investigated were associated with the gut microbiota. Specifically, body mass index (BMI), race, sex, and alcohol use were significantly associated with microbial β-diversity (P < 0.05, unweighted UniFrac). BMI, race and alcohol use were also significantly associated with microbial α-diversity (P < 0.05, species richness). Tobacco use showed a trend toward association with the microbiota (P < 0.1, unweighted UniFrac). The effect sizes of the associations, as quantified by adjusted R2values based on unweighted UniFrac distances, were small (< 1% for all variables), indicating that these factors explain only a small percentage of overall microbiota variability. Nevertheless, the significant associations between these variables and the gut microbiota suggest that they could still be potential confounders in comparative studies and that controlling for these variables in study design, which is the main objective of the MWRP, is important for increasing reproducibility in comparative microbiome studies.


Sign in / Sign up

Export Citation Format

Share Document