Dietary methionine restriction improves the gut microbiota and reduces intestinal permeability and inflammation in high-fat-fed mice

2019 ◽  
Vol 10 (9) ◽  
pp. 5952-5968 ◽  
Author(s):  
Yuhui Yang ◽  
Yuanhong Zhang ◽  
Yuncong Xu ◽  
Tingyu Luo ◽  
Yueting Ge ◽  
...  

Dietary methionine restriction improved the intestinal microbiota composition, barrier function, oxidative stress, and inflammation in high-fat-fed mice.

2018 ◽  
Vol 84 (17) ◽  
Author(s):  
Chuanshang Cheng ◽  
Hongkui Wei ◽  
Chuanhui Xu ◽  
Xiaowei Xie ◽  
Siwen Jiang ◽  
...  

ABSTRACT Increasing evidence suggests that maternal diet during pregnancy modifies an offspring's microbiota composition and intestinal development in a long-term manner. However, the effects of maternal soluble fiber diet during pregnancy on growth traits and the developing intestine are still underexplored. Sows were allocated to either a control or 2.0% pregelatinized waxy maize starch plus guar gum (SF) dietary treatment during gestation. Growth performance, diarrhea incidence, gut microbiota composition and metabolism, and gut permeability and inflammation status of 14-day-old suckling piglets were analyzed. The maternal SF diet improved the growth rate and decreased the incidence of diarrhea in the piglets. Next-generation sequencing analysis revealed that the intestinal microbiota composition was altered by a maternal SF diet. The fecal and plasma levels of acetate and butyrate were also increased. Furthermore, a maternal SF diet reduced the levels of plasma zonulin and fecal lipocalin-2 but increased the plasma concentrations of interleukin 10 (IL-10) and transforming growth factor β (TGF-β). Additionally, the increased relative abundances of Lactobacillus spp. in SF piglets were positively correlated with growth rate, while the decreased abundances of Bilophila spp. were positively correlated with fecal lipocalin-2 levels. Our data reveal that a maternal SF diet during pregnancy has remarkable effects on an offspring's growth traits and intestinal permeability and inflammation, perhaps by modulating the composition and metabolism of gut microbiota. IMPORTANCE Although the direct effects of dietary soluble fiber on gut microbiota have been extensively studied, the more indirect effects of maternal nutrition solely during pregnancy on the development of the offspring's intestine are until now largely unexplored. Our data show that a maternal soluble fiber diet during pregnancy is independently associated with changes in the intestinal microbiota composition and metabolism of suckling piglets. These findings have direct implications for refining dietary recommendations in pregnancy. Moreover, a maternal soluble fiber diet reduces intestinal permeability and prevents intestinal inflammation and an excessive systemic immune response of suckling piglets. Therefore, the suckling piglets' resistance to disease was enhanced, diarrhea was reduced, and weight gain was raised. Additionally, the changes in gut microbiota in response to a maternal soluble fiber diet may also be directly correlated with the offspring's growth and gut development.


2021 ◽  
Author(s):  
Yilin Liu ◽  
Chunyan Xie ◽  
Zhenya Zhai ◽  
Ze-yuan Deng ◽  
Hugo R. De Jonge ◽  
...  

This study aimed to investigate the effect of uridine on obesity, fat accumulation in liver, and gut microbiota composition in high-fat diet-fed mice.


BMJ Open ◽  
2021 ◽  
Vol 11 (2) ◽  
pp. e038933
Author(s):  
Rita Salvado ◽  
Sandra Santos-Minguez ◽  
Cristina Agudo-Conde ◽  
Cristina Lugones-Sanchez ◽  
Angela Cabo-Laso ◽  
...  

IntroductionIntestinal microbiota is arising as a new element in the physiopathology of cardiovascular diseases. A healthy microbiota includes a balanced representation of bacteria with health promotion functions (symbiotes). The aim of this study is to analyse the relationship between intestinal microbiota composition and arterial stiffness.Methods and analysisAn observational case—control study will be developed. Cases will be defined by the presence of at least one of the following: carotid-femoral pulse wave velocity (cf-PWV), Cardio-Ankle Vascular Index (CAVI), brachial ankle pulse wave velocity (ba or ba-PWV) above the 90th percentile, for age and sex, of the reference population. Controls will be selected from the same population as cases. The study will be developed in Primary Healthcare Centres. We will select 500 subjects (250 cases and 250 controls), between 45 and 74 years of age. Cases will be selected from a database that combines data from EVA study (Spain) and Guimarães/Vizela study (Portugal). Measurements: cf-PWV will be measured using the SphygmoCor system, CAVI, ba-PWV and Ankle-Brachial Index will be determined using VaSera device. Gut microbiome composition in faecal samples will be determined by 16S ribosomal RNA sequencing. Lifestyle will be assessed by food frequency questionnaire, adherence to the Mediterranean diet and IPAQ (International Physical Activity Questionnaire). Body composition will be evaluated by bioimpedance.Ethics and disseminationThe study has been approved by ‘Committee of ethics of research with medicines of the health area of Salamanca’ on 14 December 2018 (cod. 2018-11-136) and the ’Ethics committee for health of Guimaraes’ (Portugal) on 15 October 2019 (ref: 67/2019). All study participants will sign an informed consent form agreeing to participate in the study, in compliance with the Declaration of Helsinki and the WHO standards for observational studies. The results of this study will allow a better description of gut microbiota in patients with arterial stiffness.Trial registration detailsClinicalTrials.gov, identifier NCT03900338


Author(s):  
Sik Yu So ◽  
Qinglong Wu ◽  
Kin Sum Leung ◽  
Zuzanna Maria Kundi ◽  
Tor C Savidge ◽  
...  

Emerging evidence links dietary fiber with altered gut microbiota composition and bile acid signaling in maintaining metabolic health. Yeast β-glucan (Y-BG) is a dietary supplement known for its immunomodulatory effect, yet its impact on the gut microbiota and bile acid composition remains unclear. This study investigated whether dietary forms of Y-BG modulate these gut-derived signals. We performed 4-week dietary supplementation in healthy mice to evaluate effects of different fiber composition (soluble vs particulate Y-BG) and dose (0.1 vs. 2%). We found that 2% particulate Y-BG induced robust gut microbiota community shifts with elevated liver Cyp7a1 mRNA abundance and bile acid synthesis. These diet-induced responses were notably different when compared to the prebiotic inulin, and included a marked reduction in fecal Bilophila abundance which we demonstrated as translatable to obesity in population-scale American Gut and TwinsUK clinical cohorts. This prompted us to test whether 2% Y-BG maintained metabolic health in mice fed 60% HFD over 13 weeks. Y-BG consistently altered the gut microbiota composition and reduced Bilophila abundance, with trends observed in improvement of metabolic phenotype. Notably, Y-BG improved insulin sensitization and this was associated with enhanced ileal Glpr1r mRNA accumulation and reduced Bilophila abundance. Collectively, our results demonstrate that Y-BG modulates gut microbiota community composition and bile acid signaling, but the dietary regime needs to be optimized to facilitate clinical improvement in metabolic phenotype in an aggressive high-fat diet animal model.


2021 ◽  
Author(s):  
Zhen Shi ◽  
Zhiyuan Fang ◽  
Xinxing Gao ◽  
Hao Yu ◽  
Yiwei Zhu ◽  
...  

Nuciferine (NF) has received extensive attention for its medicinal value in the treatment of metabolic diseases, such as obesity, but the effects of NF on obesity-related intestinal permeability, autophagy and...


2021 ◽  
Author(s):  
Irene Maier ◽  
Paul M Ruegger ◽  
Julia Deutschmann ◽  
Thomas H. Helbich ◽  
Peter Pietschmann ◽  
...  

Microbiota can both negatively and positively impact radiation-induced bone loss. Our prior research showed that compared to mice with conventional gut microbiota (CM), mice with restricted gut microbiota (RM) reduced inflammatory tumor necrosis factor (TNF) in bone marrow, interleukin (IL)-17 in blood, and chemokine (C-C motif) ligand 20 (CCL20) in bone marrow under anti-IL-17 treatment. We showed that Muribaculum intestinale was more abundant in intestinal epithelial cells (IECs) from the small intestine of female RM mice and positively associated with augmented skeletal bone structure. Female C57BL/6J pun RM mice, which were injected with anti-IL-17 antibody one day before exposure to 1.5 Gy 28Si ions of 850 MeV/u, showed high trabecular numbers in tibiae at 6 weeks postirradiation. Irradiated CM mice were investigated for lower interferon-γ and IL-17 levels in the small intestine than RM mice. IL-17 blockage resulted in bacterial indicator phylotypes being different between both microbiota groups before and after irradiation. Analysis of the fecal bacteria were performed in relation to bone quality and body weight, showing reduced tibia cortical thickness in irradiated CM mice (–15%) vs. irradiated RM mice (–9.2%). Correlation analyses identified relationships among trabecular bone parameters (TRI-BV/TV, Tb.N, Tb.Th, Tb.Sp) and Bacteroides massiliensis, Muribaculum sp. and Prevotella denticola. Turicibacter sp. was found directly correlated with trabecular separation in anti-IL-17 treated mice, whereas an unidentified Bacteroidetes correlated with trabecular thickness in anti-IL-17 neutralized and radiation-exposed mice. We demonstrated radiation-induced osteolytic damage to correlate with bacterial indicator phylotypes of the intestinal microbiota composition, and these relationships were determined from the previously discovered dose-dependent particle radiation effects on cell proliferation in bone tissue. New translational approaches were designed to investigate dynamic changes of gut microbiota in correlation with conditions of treatment and disease as well as mechanisms of systemic side-effects in radiotherapy.


mSystems ◽  
2019 ◽  
Vol 4 (2) ◽  
Author(s):  
Héctor Argüello ◽  
Jordi Estellé ◽  
Finola C. Leonard ◽  
Fiona Crispie ◽  
Paul D. Cotter ◽  
...  

ABSTRACT Salmonella colonization and infection in production animals such as pigs are a cause for concern from a public health perspective. Variations in susceptibility to natural infection may be influenced by the intestinal microbiota. Using 16S rRNA compositional sequencing, we characterized the fecal microbiome of 15 weaned pigs naturally infected with Salmonella at 18, 33, and 45 days postweaning. Dissimilarities in microbiota composition were analyzed in relation to Salmonella infection status (infected, not infected), serological status, and shedding pattern (nonshedders, single-point shedders, intermittent-persistent shedders). Global microbiota composition was associated with the infection outcome based on serological analysis. Greater richness within the microbiota postweaning was linked to pigs being seronegative at the end of the study at 11 weeks of age. Members of the Clostridia, such as Blautia, Roseburia, and Anaerovibrio, were more abundant and part of the core microbiome in nonshedder pigs. Cellulolytic microbiota (Ruminococcus and Prevotella) were also more abundant in noninfected pigs during the weaning and growing stages. Microbial profiling also revealed that infected pigs had a higher abundance of Lactobacillus and Oscillospira, the latter also being part of the core microbiome of intermittent-persistent shedders. These findings suggest that a lack of microbiome maturation and greater proportions of microorganisms associated with suckling increase susceptibility to infection. In addition, the persistence of Salmonella shedding may be associated with an enrichment of pathobionts such as Anaerobiospirillum. Overall, these results suggest that there may be merit in manipulating certain taxa within the porcine intestinal microbial community to increase disease resistance against Salmonella in pigs. IMPORTANCE Salmonella is a global threat for public health, and pork is one of the main sources of human salmonellosis. However, the complex epidemiology of the infection limits current control strategies aimed at reducing the prevalence of this infection in pigs. The present study analyzes for the first time the impact of the gut microbiota in Salmonella infection in pigs and its shedding pattern in naturally infected growing pigs. Microbiome (16S rRNA amplicon) analysis reveals that maturation of the gut microbiome could be a key consideration with respect to limiting the infection and shedding of Salmonella in pigs. Indeed, seronegative animals had higher richness of the gut microbiota early after weaning, and uninfected pigs had higher abundance of strict anaerobes from the class Clostridia, results which demonstrate that a fast transition from the suckling microbiota to a postweaning microbiota could be crucial with respect to protecting the animals.


Nutrients ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1954
Author(s):  
John-Peter Ganda Mall ◽  
Frida Fart ◽  
Julia A. Sabet ◽  
Carl Mårten Lindqvist ◽  
Ragnhild Nestestog ◽  
...  

The effect of dietary fibres on intestinal barrier function has not been well studied, especially in the elderly. We aimed to investigate the potential of the dietary fibres oat β-glucan and wheat arabinoxylan to strengthen the intestinal barrier function and counteract acute non-steroid anti-inflammatory drug (indomethacin)-induced hyperpermeability in the elderly. A general population of elderly subjects (≥65 years, n = 49) was randomised to a daily supplementation (12g/day) of oat β-glucan, arabinoxylan or placebo (maltodextrin) for six weeks. The primary outcome was change in acute indomethacin-induced intestinal permeability from baseline, assessed by an in vivo multi-sugar permeability test. Secondary outcomes were changes from baseline in: gut microbiota composition, systemic inflammatory status and self-reported health. Despite a majority of the study population (85%) showing a habitual fibre intake below the recommendation, no significant effects on acute indomethacin-induced intestinal hyperpermeability in vivo or gut microbiota composition were observed after six weeks intervention with either dietary fibre, compared to placebo.


Sign in / Sign up

Export Citation Format

Share Document