Chromogenic agents built around a multifunctional double-triazine framework for enzymatically triggered cross-linking under physiological conditions

2020 ◽  
Vol 44 (10) ◽  
pp. 3856-3867 ◽  
Author(s):  
Hikaru Fujita ◽  
Yunlong Zhang ◽  
Zhiyuan Wu ◽  
Jonathan S. Lindsey

A molecular architecture designed for bioconjugation and internal absorption ratiometry undergoes enzymatically triggered cleavage of glucosyl groups and subsequent oxidative dimerization in aqueous solution to yield indigoid-containing scaffolds.

2020 ◽  
Vol 44 (3) ◽  
pp. 719-743 ◽  
Author(s):  
Hikaru Fujita ◽  
Jinghuai Dou ◽  
Nobuyuki Matsumoto ◽  
Zhiyuan Wu ◽  
Jonathan S. Lindsey

Oxidative dimerization of an indoxyl moiety, released by glycosidase action in aqueous solution, yields an indigoid dye in formats that enable bioconjugation and molecular cross-linking.


Polymers ◽  
2021 ◽  
Vol 13 (11) ◽  
pp. 1706
Author(s):  
Elena Olăreț ◽  
Brîndușa Bălănucă ◽  
Andra Mihaela Onaș ◽  
Jana Ghițman ◽  
Horia Iovu ◽  
...  

Mucin is a glycoprotein with proven potential in the biomaterials field, but its use is still underexploited for such applications. The present work aims to produce a synthesis of methacryloyl mucin single-network (SN) hydrogels and their double-cross-linked-network (DCN) counterparts. Following the synthesis of the mucin methacryloyl derivative, various SN hydrogels are prepared through the photopolymerization of methacrylate bonds, using reaction media with different pH values. The SN hydrogels are converted into DCN systems via supplementary cross-linking in tannic acid aqueous solution. The chemical modification of mucin is described, and the obtained product is characterized; the structural modification of mucin is assessed through FTIR spectroscopy, and the circular dichroism and the isoelectric point of methacryloyl mucin is evaluated. The affinity for aqueous media of both SN and DCN hydrogels is estimated, and the mechanical properties of the systems are assessed, both at macroscale through uniaxial compression and rheology tests and also at microscale through nanoindentation tests.


2018 ◽  
Vol 76 (7) ◽  
pp. 3535-3554 ◽  
Author(s):  
Akila Merakchi ◽  
Souhila Bettayeb ◽  
Nadjib Drouiche ◽  
Lydia Adour ◽  
Hakim Lounici

2017 ◽  
Vol 50 (4) ◽  
pp. 1482-1493 ◽  
Author(s):  
Sarah J. Byard ◽  
Mark Williams ◽  
Beulah E. McKenzie ◽  
Adam Blanazs ◽  
Steven P. Armes

Author(s):  
Mirvari Hasanova Mirvari Hasanova

The separation and purification of antibiotics with sorption by ion-exchange materials, as well as their delivery in biological processes by immobilization, are now widely used in biotechnology. There are many scientific studies in the literature on the sorption of antibiotics by polymer-based sorbents and inorganic materials, as well as the study of thermodynamics and kinetics of the process. In the literature, the acquisition of biologically active systems from the sorption of antibiotics by ion-exchange fibers based on various polymers and inorganic substances was carried out. However, the synthesis of selective gels for the effective separation of doxycycline and its delivery in different pH mediums by sorption with biodegradable, biocompatible polysaccharide-containing composites is one of the topical issues. Gel was synthesized from the cross-linking of N,N-diethyl N-methyl derivative of a natural polyaminosaccharide of chitosan by glutaric aldehyde. Also, pH-sensitive hydrogels that can swollen in water were synthesized from the cross-linking of a graft copolymer of cherry source gummiarabic with N-vinylpyrrolidone, as well as synthetic polymer polyacrylic acid with N,N-methylene-bis-acrylamide. The structure of the gels were identified by FTIR and NMR spectroscopy, and the sorption of doxycycline antibiotic from an aqueous solution was investigated. According to the values of zeta potential, the protonation of functional groups in the main macromolecule in an acidic medium leads to a value of zeta potential of 40÷80 mV on the surface of chitosan-based gel and others. Although the chemical structure is different, the isoelectric point is set around pH=6÷8 for all three hydrogels. The dependences of the sorption process on the amount of gels, antibiotic concentration, temperature, and pH medium were studied. The experimental data were analyzed using two adsorption models, Langmuir and Freundlich, with the later system providing the best fit. Doxycycline is adsorbed on the surface of chitosan, gummiarabic and polyacrylic acid based hydrogel composite through by physical interactions. Also, the results of thermodynamic parameters ΔG40 kJ/mol show that the nature of the adsorption process is physical, and spontaneous, too. Keywords: Chitosan, Gummiarabic-arabinogalactane, polyacrylic acid, hydrogel, sorption isoterms, doxycycline, thermodynamica.


2003 ◽  
Vol 36 (7) ◽  
pp. 2484-2492 ◽  
Author(s):  
Slawomir Kadlubowski ◽  
Jaroslaw Grobelny ◽  
Wielislaw Olejniczak ◽  
Michal Cichomski ◽  
Piotr Ulanski

NANO ◽  
2021 ◽  
pp. 2150008
Author(s):  
Hongwei Liu ◽  
Jinhua Liu ◽  
Jun Li ◽  
Zhanchao Liu ◽  
Weifu Wu ◽  
...  

An excellent novel laminar and hierarchical polyethyleneimine cross-linked graphene oxide/titanium dioxide (GO–TiO2–PEI) membrane was successfully prepared by vacuum filtration technology using polyethyleneimine (PEI) as the cross-linking agent and a GO–TiO2 nanocomposite as the substrate. The resultant membrane (GO–TiO2–PEI) displayed a favorable antifouling performance with bovine serum albumin (BSA) and showed good hydrophilicity and wettability, with a static water contact angle of 13.2∘. The stability of the GO–TiO2–PEI membrane in aqueous solution obviously improved with the cross-linking of PEI compared with that of the GO and GO–TiO2 membranes. The GO–TiO2–PEI membrane also exhibited a satisfactory water flux of 48.6[Formula: see text]L m[Formula: see text] h[Formula: see text] bar[Formula: see text]. The GO–TiO2–PEI membrane exhibited a good performance for effectively separating different dyes including methylene blue (MB), rhodamine B (RB), methyl orange (MO), sunset yellow (SY), new coccine (NC) and amaranth. All the above results suggested that the GO–TiO2–PEI membrane could be used as an excellent stable hydrophilic membrane for efficiently separating dyes from aqueous solution.


Cells ◽  
2020 ◽  
Vol 9 (7) ◽  
pp. 1633 ◽  
Author(s):  
Giel Stalmans ◽  
Anastasia V. Lilina ◽  
Pieter-Jan Vermeire ◽  
Jan Fiala ◽  
Petr Novák ◽  
...  

The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal ‘head-to-tail’ interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.


Sign in / Sign up

Export Citation Format

Share Document