A review on recent advances in polymer and peptide hydrogels

Soft Matter ◽  
2020 ◽  
Vol 16 (6) ◽  
pp. 1404-1454 ◽  
Author(s):  
Sanjoy Mondal ◽  
Sujoy Das ◽  
Arun K. Nandi

Herein, very recent advances in polymer, peptide, and hybrid hydrogels for uses in photovoltaics, supercapacitor, organic electronics, drug delivery, tissue engineering, biosensing, cell culture, and different optoelectronic materials are discussed.

2020 ◽  
Vol 4 (4) ◽  
pp. 1089-1104 ◽  
Author(s):  
Fang Fang ◽  
Fanling Meng ◽  
Liang Luo

This review summarized most recent advances of designing strategies of polydiacetylene-based smart biomaterials with unique colorimetric and mechanical properties, as well as their applications in biosensing, drug delivery, and tissue engineering.


2019 ◽  
Vol 15 (12) ◽  
pp. 2351-2362
Author(s):  
Yingjie Xu ◽  
Xin Wu ◽  
Shuyi Wang ◽  
Changzhou Yang ◽  
Ying Li ◽  
...  

Hydrogels have been widely used to mimic the biochemical and mechanical environments of native extracellular matrices for cell culture and tissue engineering. Among them, self-assembling peptide hydrogels are of special interest thanks to their great biocompatibility, designability and convenient preparation procedures. In pioneering studies, self-assembling peptide hydrogels have been used for the culture of bone marrow cells. However, the low mechanical stability of peptide hydrogels seems to be a drawback for these applications, as bone marrow cells prefer hard substrates for osteogenic differentiation. In this work, we explored the use of hydroxyapatite (HAP)-peptide hybrid hydrogels for three-dimensional (3D) culture and differentiation of osteogenic MC3T3-E1 cells. We used HAP nanoparticles as crosslinkers to increase the mechanical stability of peptide hydrogels. Meanwhile, HAP provided unique chemical cues to promote the differentiation of osteoblasts. A phosphate group was introduced to the self-assembling peptide so that the peptide fibers could bind to HAP nanoparticles specifically and strongly. Rheological characterization indicated that the hybrid hydrogels were mechanically more stable than the hydrogels containing only peptides and can be used for long term cell culture. Moreover, the hydrogels were biocompatible and showed very low cytotoxicity. The favorable mechanical properties of the hybrid hydrogels and the chemical properties of HAP synergistically supported the differentiation of MC3T3-E1 cells. Based on these characterizations, we believe that these hybrid hydrogels can potentially be used as scaffolds for cartilage and bone regeneration in the future.


Soft Matter ◽  
2019 ◽  
Vol 15 (8) ◽  
pp. 1704-1715 ◽  
Author(s):  
Jieling Li ◽  
Ruirui Xing ◽  
Shuo Bai ◽  
Xuehai Yan

The review introduces several methods for fabrication of robust peptide-based hydrogels and their biological applications in the fields of drug delivery and antitumor therapy, antimicrobial and wound healing materials, and 3D bioprinting and tissue engineering.


2021 ◽  
Vol 8 (6) ◽  
pp. 13-21
Author(s):  
Odia Osemwegie ◽  
Lihua Lou ◽  
Ernest Smith ◽  
Seshadri Ramkumar

Nanofiber substrates have been used for various biomedical applications, including tissue regeneration, drug delivery, and in-vitro cell culture. However, despite the high volume of studies in this field, current clinical applications remain minimal. Innovations for their applications continuously generate exciting prospects. In this review, we discuss some of these novel innovations and identify critical factors to consider before their adoption for biomedical applications.


Author(s):  
Kankan Qin ◽  
Cleo Parisi ◽  
Francisco M. Fernandes

We review the evolution of ice-templating process from initial inorganic materials to recent developments in shaping increasingly labile biological matter.


2021 ◽  
Author(s):  
Jia Lv ◽  
Yiyun Cheng

Biomedical applications of fluoropolymers in gene delivery, protein delivery, drug delivery, 19F MRI, PDT, anti-fouling, anti-bacterial, cell culture, and tissue engineering.


2015 ◽  
Vol 3 (43) ◽  
pp. 8433-8444 ◽  
Author(s):  
Eun Young Kim ◽  
Dinesh Kumar ◽  
Gilson Khang ◽  
Dong-Kwon Lim

The recently developed gold nanoparticle-based bioengineering technologies for biosensors,in vitroandin vivobioimaging, drug delivery systems for improved therapeutics and tissue engineering are discussed.


Sign in / Sign up

Export Citation Format

Share Document